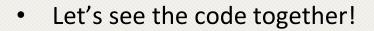
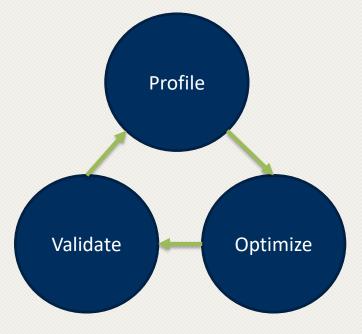


LeGendre Pairs?!

- Actually, this talk is not about LeGendre Pairs!
- It is about optimizing it.
 - But how to improve a program without fully understanding it?
- Only realize fundamental features, e.g.:
 - Various sections
 - Code semantics
 - Data and control flow
 - Repetition
 - Memory access pattern
 - Memory packing/unpacking
 - ...





Section 245 – General Observations

- 3800+ lines of code
- Several nested loops -> huge search space
- Very large inner-most loop.
- Two main sections:
 - 1. Populate an array
 - 2. Perform computation and check some conditions on it
- Loop iterations:
 - Imbalanced
 - Independent
- Deterministic
 - No random variable
- No race condition (yet!)
- Several variables that can be packed

Section 2017 LeGendre Pairs L45 – Analysis

- Runtime profile and analysis using runtime tools, e.g. gprof
- \$ gcc source -o executable \$(FLAGS) -g -pg
- \$./executable
- \$ gprof --all-lines --line -b executable gmon.a.out > analysis.a.out
- Let's see the output and <u>some data</u>
- Section 1:
 - takes 30% of the whole execution time
 - is memory-bound. So, utilizing Cache, Shared memory, or Constant Memory improves its performance.
 - (On GPU) Coallesced memory access is also very important, as there are some patterns in Section A.

Section 2017 LeGendre Pairs L45 – Analysis

- Section 2:
 - is compute-bound (if caching is utilized properly).
 - Having each thread performing each iteration makes sense. However, the iterations are wildly imbalance.
 - Less than 0.01 percent of the iterations makes to the final condition check; (dynamic task assignment?).
 - DFT computations can be handled by multiple threads in reduction-like pattern. O(logn)

Print operations

- They do not take considerable time
- When porting to GPU, the results should be buffered and gets returned to the CPU, either at the end of each slice, or frequently during running the kernel.

Section 2017 LeGendre Pairs L45 – Analysis

- Let's cleanup the code
- Execution time on **Polydeuces**:

#	Version	Duration of part A (ms)	Speedup vs. #1	Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
2	#1 with Buffered Results	1178997.37	1.01x	576614.09	1.01x
3	#2 with -O3 compiler flag	725519.95	1.63x	374696.34	1.54x

Soluti-threaded Version

- Let's call OpenMP for help!
 - It is an API for shared-memory multiprocessing programming in C/C++, and Fortran.
- Pay attention to shared data and local data
- Watch out race conditions
- Let's see the code.

#	Version	Duration of part A (ms) Speedup vs. #1		Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
2	#1 with Buffered Results	1178997.37	1.01x	576614.09	1.01x
3	#2 with -O3 compiler flag	725519.95	1.63x	374696.34	1.54x
4	#2 with 2 OMP threads (outermost loop)	642096.61	1.85x	335816.28	1.72x
5	#4 with -O3 compiler flag	380146.53	3.12x	185300.15	3.11x

Soluti-threaded Version

• How does increasing cores affect performance?

#	Version	Duration of part A (ms)	Speedup vs. #1	Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
2	#1 with Buffered Results	1178997.37	1.01x	576614.09	1.01x
3	#2 with -O3 compiler flag	725519.95	1.63x	374696.34	1.54x
4	#2 with 2 OMP threads (outermost loop)	642096.61	1.85x	335816.28	1.72x
5	#4 with -O3 compiler flag	380146.53	3.12x	185300.15	3.11x
6	#5 with 4 OMP threads (outermost loop)	192162.96	6.19x	107076.45	5.3x

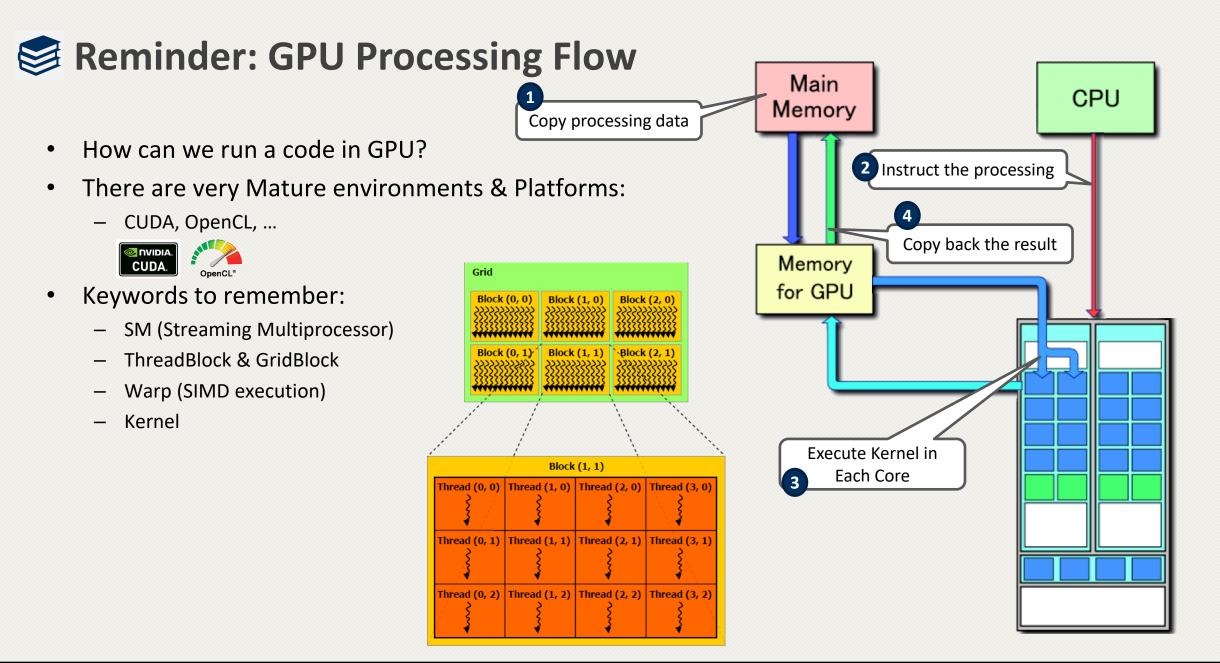
- How to tell if increasing cores will definitely improve the performance?
 - Parallel efficiency

Se Parallel Efficiency

The parallel efficiency of a program is the ratio of the speedup factor S(n) and the number of processors. Efficiency = S(n) / n

#	Version	No of CPU cores Speedup vs. #1		Parallel Efficiency
1	with -O3 compiler flag	1	1	-
2	#1 with 2 OMP threads (outermost loop)	2	1.91x	0.95
3	#1 with 4 OMP threads (outermost loop)	4	3.76x	0.94
4	#1 with 6 OMP threads (outermost loop)	6	5.66x	0.94

• This virtually means that as long as we have free cores, we can improve the performance.



Section 2018 - CUDA v1

- Let's see the code first.
- Need to measure data transfers, too.
- Profile and monitor GPU codes:
 - Nvtop
 - NVIDIA Visual Profiler (nvvp)
 - NVIDIA Nsight Systems (nsys)
 - NVIDIA Nsight Compute (ncu)
- Results are for running on NVIDIA GeForce GTX 1060 3GB

#	Version	Duration of part A (ms)	Speedup vs. #1	Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
10	CUDA v1 (126 x 84) = 10584 threads	55190.91	21.5x	48097.78	11.8x

Section 2 - CUDA v2 - Constant Memory

- GPUs have a dedicated memory section for constant memory.
- This decreases memory access latency significantly.

#	Version	Duration of part A (ms)	Speedup vs. #1	Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
2	CUDA v1 (126 x 84) = 10584 threads	55190.91	21.5x	48097.78	11.8x
3	CUDA v2 (126 x 84) – Constant Memory	29913.48	39.71x	23396.84	24.7x

Secondre Pairs - CUDA v3 – Fill Up Scheduler Queue

- Utilize 3D grids of blocks and 2D blocks of threads
 - Basic strategy: each dimension covers one of the loops
 - $-(126 \times 84 \times 84) \times (32 \times 16) = 455196672$ threads!
 - Let's see the code.

#	Version	Duration of part A (ms)	Speedup vs. #1	Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
2	CUDA v1 (126 x 84) = 10584 threads	55190.91	21.5x	48097.78	11.8x
3	CUDA v2 (126 x 84) – Constant Memory	29913.48	39.71x	23396.84	24.7x
4	CUDA v3 – 3D grids	18837.89	63.05x	16291.29	35.4x

Second re Pairs - CUDA v4 – Tuned Kernel Parameters

- This optimization is almost hardware specific. It is based on:
 - Number of threads per warp (group of threads that run together) 32
 - Number of registers available for each block, and *register spilling* problem
 - Amount of Constant Memory accessible on each SM
 - Hardware architecture and compute capabilities
 - So, the best parameters will vary from device to device. Let's check Nvvp and Nvtop!
- The best parameters on my machine is: (126 x 84 x 84) x (8 x 32)

#	Version	Duration of part A (ms) Speedup vs. #1		Duration of Part B	Speedup vs. #1	
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x	
2	CUDA v1 (126 x 84) = 10584 threads	55190.91	21.5x	48097.78	11.8x	
3	CUDA v2 (126 x 84) – Constant Memory	29913.48	39.71x	23396.84	24.7x	
4	CUDA v3 – 3D grids	18837.89	63.05x	16291.29	35.4x	
5	CUDA v4 – with tuned kernel parameters	15920.46	74.62x	13680.04	42.25x	

Second re Pairs – CUDA v5 – Utilizing Shared Memory

- Problem with local variables and register spilling
 - Compiler utilizes Global Memory to store local variables
 - Global memory is cached, but if we want to specifically cache some variable, we should use Shared Memory
- Let's see the code.

#	Version	Duration of part A (ms)	Speedup vs. #1	Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
2	CUDA v1 (126 x 84) = 10584 threads	55190.91	21.5x	48097.78	11.8x
3	CUDA v2 (126 x 84) – Constant Memory	29913.48	39.71x	23396.84	24.7x
4	CUDA v3 – 3D grids	18837.89	63.05x	16291.29	35.4x
5	CUDA v4 – with tuned kernel parameters	15920.46	74.62x	13680.04	42.25x
6	CUDA v5 – Store A in Shared Memory	15032.12	79.03x	13022.03	44.38x

• It seems that we are hitting the limit. **Or are we?!**

- Simultaneous Multiprocessors
- SIMD (or SIMT) Architectures
- Warp scheduling

SM							L1 Instru	ctio	n Cache						
	L0 Instruction Cache										L0 li	nstruc	tion C	ache	
	Warp Scheduler (32 thread/clk)							War	<mark>p Sc</mark> h	nedule	r (32 t	hread/clk)			
	Dispatch Unit (32 thread/clk) Register File (16,384 x 32-bit)						Dis	spatc	h Unit	(32 th	read/clk)				
							Reg	ister	File (′	16,384	4 x 32-bit)				
FP64	INT	INT	FP32	FP32	F				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32	\square				FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32		SOR			FP64	INT	INT	FP32	FP32	TENSOR	TENSOR
FP64	INT	INT	FP32	FP32	CC	RE	CORE		FP64	INT	INT	FP32	FP32	CORE	CORE
FP64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32		
FP64	INT	INT	FP32	FP32					FP64	INT	INT	FP32	FP32		
LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	SFU		LD/ LD/ ST ST	LD/ ST	LD/ ST	LD/ ST	LD/ ST	LD/ LD/ ST ST	SFU

Images' source: NVIDIA and Illawarra Dragon Boat Club

• SIMT architecture and warp execution model



- Why is branch divergence important?!
- Let's check the profiler.

LeGendre Pairs – CUDA v6 – Remove Branch Divergence

- Figure out permutations:
 - Dynamically by each thread
 - Statically and inform all threads through (constant) memory
 - But some parts of constant memory is already used. Solution?
 - Let's see the code

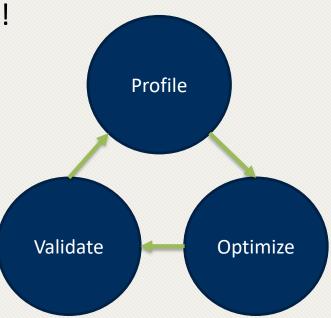
#	Version	Duration of part A (ms)	Speedup vs. #1	Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
2	CUDA v1 (126 x 84) = 10584 threads	55190.91	21.5x	48097.78	11.8x
3	CUDA v2 (126 x 84) – Constant Memory	29913.48	39.71x	23396.84	24.7x
4	CUDA v3 – 3D grids	18837.89	63.05x	16291.29	35.4x
5	CUDA v4 – with tuned kernel parameters	15920.46	74.62x	13680.04	42.25x
6	CUDA v5 – Store A in Shared Memory	15032.12	79.03x	13022.03	44.38x
7	CUDA v6 – Remove Branch Divergence	7357.17	161.48x	5011.70	115.33x

Section 2017 - CUDA v7 – Tuned Kernel Parameters

- You'd think we are done! But no! Let's see one last profile.
- The best parameters was: (126 x 84 x 84) x (8 x 32)
- Now let's fill up the warp with new configuration: (126 x 84 x 84) x (32 x 4)

#	Version	Duration of part A (ms)	Speedup vs. #1	Duration of Part B	Speedup vs. #1
1	Single CPU core – cleaned up	1188047.15	1x	578017.02	1x
2	CUDA v1 (126 x 84) = 10584 threads	55190.91	21.5x	48097.78	11.8x
3	CUDA v2 (126 x 84) – Constant Memory	29913.48	39.71x	23396.84	24.7x
4	CUDA v3 – 3D grids	18837.89	63.05x	16291.29	35.4x
5	CUDA v4 – with tuned kernel parameters	15920.46	74.62x	13680.04	42.25x
6	CUDA v5 – Store A in Shared Memory	15032.12	79.03x	13022.03	44.38x
7	CUDA v6 – Remove Branch Divergence	7357.17	161.48x	5011.70	115.33x
8	CUDA v7 – with tuned kernel Parameters	5863.91	202.6x	3594	160.8x

- Git and Make are your friends
- Profilers and debuggers are your best friends
- Never give up when it comes to optimization!
 - Just remember the cycle for each update



Thank You 🕑

Instead of blaming darkness, let's light a candle!

Questions, Comments, and Ideas are Welcome!

