
LeGendre Pairs,
a Love Story Across the HPC Universe:

The Cores of Power!

Distributive Book Club

2

LeGendre Pairs?!

• Actually, this talk is not about LeGendre Pairs!

• It is about optimizing it.
– But how to improve a program without fully understanding it?

• Only realize fundamental features, e.g.:
– Various sections

– Code semantics

– Data and control flow

– Repetition

– Memory access pattern

– Memory packing/unpacking

– …

• Let’s see the code together!

Optimize

Profile

Validate

3

LeGendre Pairs L45 – General Observations

• 3800+ lines of code

• Several nested loops -> huge search space

• Very large inner-most loop.

• Two main sections:
1. Populate an array

2. Perform computation and check some conditions on it

• Loop iterations:
– Imbalanced

– Independent

• Deterministic
– No random variable

• No race condition (yet!)

• Several variables that can be packed

4

LeGendre Pairs L45 – Analysis

• Runtime profile and analysis using runtime tools, e.g. gprof

$ gcc source -o executable $(FLAGS) -g –pg

$./executable

$ gprof --all-lines --line -b executable gmon.a.out > analysis.a.out

• Let’s see the output and some data

• Section 1:
– takes 30% of the whole execution time

– is memory-bound. So, utilizing Cache, Shared memory, or Constant Memory improves its performance.

– (On GPU) Coallesced memory access is also very important, as there are some patterns in Section A.

https://docs.google.com/spreadsheets/d/18ee6AcstlM0hR8f-FiMJXWZ4DHgr4K7Z_AdT0j-I4L8/

5

LeGendre Pairs L45 – Analysis

• Section 2:
– is compute-bound (if caching is utilized properly).

– Having each thread performing each iteration makes sense. However, the iterations are wildly imbalance.

– Less than 0.01 percent of the iterations makes to the final condition check; (dynamic task assignment?).

– DFT computations can be handled by multiple threads in reduction-like pattern. O(logn)

• Print operations
– They do not take considerable time

– When porting to GPU, the results should be buffered and gets returned to the CPU, either at the end of
each slice, or frequently during running the kernel.

6

LeGendre Pairs L45 – Analysis

• Let’s cleanup the code

• Execution time on Polydeuces:

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 #1 with Buffered Results 1178997.37 1.01x 576614.09 1.01x

3 #2 with -O3 compiler flag 725519.95 1.63x 374696.34 1.54x

7

Multi-threaded Version

• Let’s call OpenMP for help!
– It is an API for shared-memory multiprocessing programming in C/C++, and Fortran.

• Pay attention to shared data and local data

• Watch out race conditions

• Let’s see the code.

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 #1 with Buffered Results 1178997.37 1.01x 576614.09 1.01x

3 #2 with -O3 compiler flag 725519.95 1.63x 374696.34 1.54x

4 #2 with 2 OMP threads (outermost loop) 642096.61 1.85x 335816.28 1.72x

5 #4 with -O3 compiler flag 380146.53 3.12x 185300.15 3.11x

8

Multi-threaded Version

• How does increasing cores affect performance?

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 #1 with Buffered Results 1178997.37 1.01x 576614.09 1.01x

3 #2 with -O3 compiler flag 725519.95 1.63x 374696.34 1.54x

4 #2 with 2 OMP threads (outermost loop) 642096.61 1.85x 335816.28 1.72x

5 #4 with -O3 compiler flag 380146.53 3.12x 185300.15 3.11x

6 #5 with 4 OMP threads (outermost loop) 192162.96 6.19x 107076.45 5.3x

• How to tell if increasing cores will definitely improve the performance?
– Parallel efficiency

9

Parallel Efficiency

• The parallel efficiency of a program is the ratio of the speedup factor S(n) and the number of
processors. Efficiency = S(n) / n

Version No of CPU cores Speedup vs. #1 Parallel Efficiency

1 with -O3 compiler flag 1 1 -

2 #1 with 2 OMP threads (outermost loop) 2 1.91x 0.95

3 #1 with 4 OMP threads (outermost loop) 4 3.76x 0.94

4 #1 with 6 OMP threads (outermost loop) 6 5.66x 0.94

• This virtually means that as long as we have free cores, we can improve the performance.

10

Reminder: GPU Processing Flow

Copy processing data

1

Execute Kernel in
Each Core3

Instruct the processing2

Copy back the result

4

• How can we run a code in GPU?

• There are very Mature environments & Platforms:
– CUDA, OpenCL, …

• Keywords to remember:
– SM (Streaming Multiprocessor)

– ThreadBlock & GridBlock

– Warp (SIMD execution)

– Kernel

11

LeGendre Pairs - CUDA v1

• Let’s see the code first.

• Need to measure data transfers, too.

• Profile and monitor GPU codes:
– Nvtop

– NVIDIA Visual Profiler (nvvp)

– NVIDIA Nsight Systems (nsys)

– NVIDIA Nsight Compute (ncu)

• Results are for running on NVIDIA GeForce GTX 1060 3GB

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

10 CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x

12

LeGendre Pairs - CUDA v2 – Constant Memory

• GPUs have a dedicated memory section for constant memory.

• This decreases memory access latency significantly.

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x

3 CUDA v2 (126 x 84) – Constant Memory 29913.48 39.71x 23396.84 24.7x

13

LeGendre Pairs - CUDA v3 – Fill Up Scheduler Queue

• Utilize 3D grids of blocks and 2D blocks of threads
– Basic strategy: each dimension covers one of the loops

– (126 x 84 x 84) x (32 x 16) = 455196672 threads!

– Let’s see the code.

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x

3 CUDA v2 (126 x 84) – Constant Memory 29913.48 39.71x 23396.84 24.7x

4 CUDA v3 – 3D grids 18837.89 63.05x 16291.29 35.4x

14

LeGendre Pairs - CUDA v4 – Tuned Kernel Parameters

• This optimization is almost hardware specific. It is based on:
– Number of threads per warp (group of threads that run together) - 32

– Number of registers available for each block, and register spilling problem

– Amount of Constant Memory accessible on each SM

– Hardware architecture and compute capabilities

– So, the best parameters will vary from device to device. Let’s check Nvvp and Nvtop!

• The best parameters on my machine is: (126 x 84 x 84) x (8 x 32)

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x

3 CUDA v2 (126 x 84) – Constant Memory 29913.48 39.71x 23396.84 24.7x

4 CUDA v3 – 3D grids 18837.89 63.05x 16291.29 35.4x

5 CUDA v4 – with tuned kernel parameters 15920.46 74.62x 13680.04 42.25x

15

LeGendre Pairs – CUDA v5 – Utilizing Shared Memory

• Problem with local variables and register spilling
– Compiler utilizes Global Memory to store local variables

– Global memory is cached, but if we want to specifically cache some variable, we should use Shared Memory

• Let’s see the code.

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x

3 CUDA v2 (126 x 84) – Constant Memory 29913.48 39.71x 23396.84 24.7x

4 CUDA v3 – 3D grids 18837.89 63.05x 16291.29 35.4x

5 CUDA v4 – with tuned kernel parameters 15920.46 74.62x 13680.04 42.25x

6 CUDA v5 – Store A in Shared Memory 15032.12 79.03x 13022.03 44.38x

• It seems that we are hitting the limit. Or are we?!

16

Branch Divergence

• Simultaneous Multiprocessors

• SIMD (or SIMT) Architectures

• Warp scheduling

Images’ source: NVIDIA and Illawarra Dragon Boat Club

17

Branch Divergence

• SIMT architecture and warp execution model

• Why is branch divergence important?!

• Let’s check the profiler.

Image source: NVIDIA

18

LeGendre Pairs – CUDA v6 – Remove Branch Divergence

• Figure out permutations:
– Dynamically – by each thread

– Statically and inform all threads through (constant) memory
• But some parts of constant memory is already used. Solution?

– Let’s see the code

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x

3 CUDA v2 (126 x 84) – Constant Memory 29913.48 39.71x 23396.84 24.7x

4 CUDA v3 – 3D grids 18837.89 63.05x 16291.29 35.4x

5 CUDA v4 – with tuned kernel parameters 15920.46 74.62x 13680.04 42.25x

6 CUDA v5 – Store A in Shared Memory 15032.12 79.03x 13022.03 44.38x

7 CUDA v6 – Remove Branch Divergence 7357.17 161.48x 5011.70 115.33x

19

LeGendre Pairs – CUDA v7 – Tuned Kernel Parameters

• You’d think we are done! But no! Let’s see one last profile.

• The best parameters was: (126 x 84 x 84) x (8 x 32)

• Now let’s fill up the warp with new configuration: (126 x 84 x 84) x (32 x 4)

Version Duration of part A (ms) Speedup vs. #1 Duration of Part B Speedup vs. #1

1 Single CPU core – cleaned up 1188047.15 1x 578017.02 1x

2 CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x

3 CUDA v2 (126 x 84) – Constant Memory 29913.48 39.71x 23396.84 24.7x

4 CUDA v3 – 3D grids 18837.89 63.05x 16291.29 35.4x

5 CUDA v4 – with tuned kernel parameters 15920.46 74.62x 13680.04 42.25x

6 CUDA v5 – Store A in Shared Memory 15032.12 79.03x 13022.03 44.38x

7 CUDA v6 – Remove Branch Divergence 7357.17 161.48x 5011.70 115.33x

8 CUDA v7 – with tuned kernel Parameters 5863.91 202.6x 3594 160.8x

20

Conclusions

• Git and Make are your friends

• Profilers and debuggers are your best friends

• Never give up when it comes to optimization!
– Just remember the cycle for each update

Optimize

Profile

Validate

ConclusionExtensionsProposalsBackgroundIntroduction 21

Thank You ☺

Instead of blaming darkness, let’s light a candle!

Questions, Comments,
and Ideas are Welcome!

