LeGendre Pairs,
a Love Story Across the HPC Universe:

The Cores of Power!

N — S

Distributive Book Club

! November 9t , 2022

& LeGendre Pairs?!

e Actually, this talk is not about LeGendre Pairs!
e |tis about optimizing it.

— But how to improve a program without fully understanding it?

* Only realize fundamental features, e.g.:
— Various sections
— Code semantics
— Data and control flow Validate
Repetition
Memory access pattern
Memory packing/unpacking

* Let’s see the code together!

& LeGendre Pairs L45 — General Observations

3800+ lines of code
Several nested loops -> huge search space
Very large inner-most loop.

Two main sections:
1. Populate an array
2. Perform computation and check some conditions on it

Loop iterations:
— Imbalanced
— Independent

Deterministic

— No random variable
No race condition (yet!)
Several variables that can be packed

& LeGendre Pairs L45 — Analysis

* Runtime profile and analysis using runtime tools, e.g. gprof

$ gcc source -o executable $(FLAGS) -g —pg
$./executable
$ gprof --all-lines --line -b executable gmon.a.out > analysis.a.ouf

 Let’s see the output and some data

* Section 1:
— takes 30% of the whole execution time
— is memory-bound. So, utilizing Cache, Shared memory, or Constant Memory improves its performance.
— (On GPU) Coallesced memory access is also very important, as there are some patterns in Section A.

https://docs.google.com/spreadsheets/d/18ee6AcstlM0hR8f-FiMJXWZ4DHgr4K7Z_AdT0j-I4L8/

& LeGendre Pairs L45 — Analysis

Section 2:
— is compute-bound (if caching is utilized properly).
— Having each thread performing each iteration makes sense. However, the iterations are wildly imbalance.
— Less than 0.01 percent of the iterations makes to the final condition check; (dynamic task assignment?).
— DFT computations can be handled by multiple threads in reduction-like pattern. O(logn)

Print operations

— They do not take considerable time

— When porting to GPU, the results should be buffered and gets returned to the CPU, either at the end of
each slice, or frequently during running the kernel.

& LeGendre Pairs L45 — Analysis

e Let’s cleanup the code

* Execution time on Polydeuces:

m Duration of part A (ms) | Speedup vs. #1 Duration of Part B Speedup vs. #1

Single CPU core — cleaned up 1188047.15 578017.02
#1 with Buffered Results 1178997.37 1.01x 576614.09 1.01x
#2 with -0O3 compiler flag 725519.95 1.63x 374696.34 1.54x

istributive

& Multi-threaded Version

 Let’s call OpenMP for help!

— Itis an API for shared-memory multiprocessing programming in C/C++, and Fortran.

e Pay attention to shared data and local data
 Watch out race conditions

Let’s see the code.

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

1 Single CPU core — cleaned up 1188047.15 578017.02

2 #1 with Buffered Results 1178997.37 1.01x 576614.09 1.01x
3 #2 with -O3 compiler flag 725519.95 1.63x 374696.34 1.54x
4 #2 with 2 OMP threads (outermost loop) 642096.61 1.85x 335816.28 1.72x
5 #4 with -03 compiler flag 380146.53 3.12x 185300.15 3.11x

istributive

& Multi-threaded Version

* How does increasing cores affect performance?

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

1 Single CPU core — cleaned up 1188047.15 578017.02

2 #1 with Buffered Results 1178997.37 1.01x 576614.09 1.01x
3 #2 with -03 compiler flag 725519.95 1.63x 374696.34 1.54x
4 #2 with 2 OMP threads (outermost loop) 642096.61 1.85x 335816.28 1.72x
5 #4 with -03 compiler flag 380146.53 3.12x 185300.15 3.11x
6 #5 with 4 OMP threads (outermost loop) 192162.96 6.19x 107076.45 5.3x

 How to tell if increasing cores will definitely improve the performance?
— Parallel efficiency

{°°

Distributive

& Parallel Efficiency

* The parallel efficiency of a program is the ratio of the speedup factor S(n) and the number of
processors. Efficiency =S(n) / n

n No of CPU cores | Speedup vs. #1 Parallel Efficiency

with -O3 compiler flag

#1 with 2 OMP threads (outermost loop) 1.91x 0.95
#1 with 4 OMP threads (outermost loop) 3.76x 0.94
#1 with 6 OMP threads (outermost loop) 5.66x 0.94

* This virtually means that as long as we have free cores, we can improve the performance.

& Reminder: GPU Processing Flow

Copy processing data

How can we run a code in GPU?

There are very Mature environments & Platforms:
— CUDA, OpenCl, ...
Keywords to remember: Block (1,)
— SM (Streaming Multiprocessor)
— ThreadBlock & GridBlock et

— Warp (SIMD execution)
Kernel

Main
Memory CPU
g

Q Instruct the processin

A

Copy back the result

Execute Kernel in
Each Core

istributive

& LeGendre Pairs - CUDA v1

Let’s see the code first.
Need to measure data transfers, too.

Profile and monitor GPU codes:
— Nvtop
— NVIDIA Visual Profiler (nvvp)
— NVIDIA Nsight Systems (nsys)
— NVIDIA Nsight Compute (ncu)

Results are for running on NVIDIA GeForce GTX 1060 3GB

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

1 Single CPU core —cleaned up 1188047.15 578017.02
10 CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x

& LeGendre Pairs - CUDA v2 — Constant Memory

 GPUs have a dedicated memory section for constant memory.
* This decreases memory access latency significantly.

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

Single CPU core — cleaned up 1188047.15 578017.02
CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x
CUDA v2 (126 x 84) — Constant Memory 29913.48 39.71x 23396.84 24.7x

Distributive

& LeGendre Pairs - CUDA v3 — Fill Up Scheduler Queue

e Utilize 3D grids of blocks and 2D blocks of threads
— Basic strategy: each dimension covers one of the loops
— (126 x84 x 84) x (32 x 16) = 455196672 threads!
— Let’s see the code.

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

Single CPU core — cleaned up 1188047.15 578017.02

CUDA v1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78 11.8x
CUDA v2 (126 x 84) — Constant Memory 29913.48 39.71x 23396.84 24.7x
CUDA v3 - 3D grids 18837.89 63.05x 16291.29 35.4x

istributive

& LeGendre Pairs - CUDA v4 — Tuned Kernel Parameters

e This optimization is almost hardware specific. It is based on:

Number of threads per warp (group of threads that run together) - 32

Number of registers available for each block, and register spilling problem

Amount of Constant Memory accessible on each SM

Hardware architecture and compute capabilities

So, the best parameters will vary from device to device. Let’s check Nvvp and Nvtop!

 The best parameters on my machine is: (126 x 84 x 84) x (8 x 32)

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

1 Single CPU core — cleaned up 1188047.15 578017.02
2 CUDA V1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78
3 CUDAV2 (126 x 84) — Constant Memory 29913.48 39.71x 23396.84
4 CUDA v3 -3D grids 18837.89 63.05x 16291.29
5 CUDA v4 — with tuned kernel parameters 15920.46 74.62x 13680.04

11.8x

24.7x

35.4x
42.25x

istributive

Problem with local variables and register spilling

— Compiler utilizes Global Memory to store local variables

& LeGendre Pairs — CUDA v5 — Utilizing Shared Memory

— Global memory is cached, but if we want to specifically cache some variable, we should use Shared Memory

Let’s see the code.

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

1
2
3
4
5
6

Single CPU core — cleaned up 1188047.15
CUDA v1 (126 x 84) = 10584 threads 55190.91
CUDA v2 (126 x 84) — Constant Memory 29913.48
CUDA v3 — 3D grids 18837.89
CUDA v4 — with tuned kernel parameters 15920.46
CUDA v5 — Store A in Shared Memory 15032.12

It seems that we are hitting the limit. Or are we?!

21.5x
39.71x
63.05x
74.62x
79.03x

578017.02
48097.78
23396.84
16291.29
13680.04
13022.03

11.8x

24.7x

35.4x
42.25x
44.38x

& Branch Divergence

e Simultaneous Multiprocessors

e SIMD (or SIMT) Architectures

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

 Warp scheduling
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 TENSOR TENSOR FP64 INT INT [FP32 FP32 TENSOR TENSOR

FP64 INT INT FP32 FP32 CORE CORE FP64 INT INT FP32 FP32 CORE CORE

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32
FP64 INT INT |FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT [FP32 FP32 FP64 INT INT [FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LDl LD/ SFU Lb/ LD/ LD/ LD/ LD/l LD/ LD/ LD/ SFU
ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Images’ source: NVIDIA and lllawarra Dragon Boat Club

& Branch Divergence

e SIMT architecture and warp execution model

if (threadIdx.x < 4) {
Aj
B;
} else {
X3
Y,

reconverge

A; B; Z;

 Why is branch divergence important?!

e Let’s check the profiler.

Image source: NVIDIA

istributive

1°°

& LeGendre Pairs — CUDA v6 — Remove Branch Divergence

* Figure out permutations:
— Dynamically — by each thread
— Statically and inform all threads through (constant) memory

* But some parts of constant memory is already used. Solution?

— Let’s see the code

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

1 Single CPU core — cleaned up 1188047.15 578017.02
2 CUDA V1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78
3 CUDA V2 (126 x 84) — Constant Memory 29913.48 39.71x 23396.84
4 CUDA v3-3D grids 18837.89 63.05x 16291.29
5 CUDA v4 — with tuned kernel parameters 15920.46 74.62x 13680.04
6 CUDA v5 —Store A in Shared Memory 15032.12 79.03x 13022.03
7 CUDA v6 — Remove Branch Divergence 7357.17 161.48x 5011.70

11.8x

24.7x

35.4x
42.25x
44 .38x
115.33x

istributive

& LeGendre Pairs — CUDA v7 — Tuned Kernel Parameters

* You'd think we are done! But no! Let’s see one last profile.
 The best parameters was: (126 x 84 x 84) x (8 x 32)
* Now let’s fill up the warp with new configuration: (126 x 84 x 84) x (32 x 4)

n Duration of part A (ms) | Speedup vs. #1 | Duration of Part B Speedup vs. #1

1 Single CPU core — cleaned up 1188047.15 578017.02
2 CUDA V1 (126 x 84) = 10584 threads 55190.91 21.5x 48097.78
3 CUDA v2 (126 x 84) — Constant Memory 29913.48 39.71x 23396.84
4 CUDA v3-3D grids 18837.89 63.05x 16291.29
5 CUDA v4 — with tuned kernel parameters 15920.46 74.62x 13680.04
6 CUDA v5 — Store A in Shared Memory 15032.12 79.03x 13022.03
7 CUDA v6 — Remove Branch Divergence 7357.17 161.48x 5011.70
8 CUDA v7 — with tuned kernel Parameters 5863.91 202.6x 3594

11.8x
24.7x
35.4x
42.25x
44.38x
115.33x
160.8x

& Conclusions

e Git and Make are your friends
* Profilers and debuggers are your best friends

* Never give up when it comes to optimization!
— Just remember the cycle for each update

Validate

Thank You ©

Instead of blaming darkness, let’s light a candle!

Questions, Comments, w
and Ideas are Welcome!

‘l..

