
LeGendre Pairs,
A Hate Story Across the HPC Universe:

The Threads of Destiny

Distributive Book Club

2

LeGendre Pairs?!

• Again, this talk is not about LeGendre Pairs!
– Thank you, Alex for helping!

• It is about optimizing it.
– But how to improve a program without fully understanding it?

• Only realize fundamental features, e.g.:
– Various sections

– Code semantics

– Data and control flow

– Repetition

– Memory access pattern

– Memory packing/unpacking

– …

• Let’s see the code together!

Optimize

Profile

Validate

3

LeGendre Pairs – General Observations

• 3800+ lines of code

• Several nested loops -> huge search space
– 126 * 844

• Very large inner-most loop.

• Two main sections:
1. Populate an array => fixed length (45)

2. Perform computation and check some conditions on them

• Loop iterations:
– Imbalanced and independent

• Deterministic
– No random variable

• Several variables that can be packed

• 8500+ lines of code

• Several nested loops -> huge search space
– 126 * 8412

• Even larger inner-most loop.

• Two main sections:
1. Populate an array => fixed length (117)

2. Perform computation and check some conditions on them

• Loop iterations:
– Imbalanced and independent

• Deterministic
– No random variable

• Several variables that can be packed

Length 45 Length 117

4

Reminder: Multi-threaded Version and Parallel Efficiency

• How does increasing cores affect performance?

• Let’s call OpenMP for help!
– It is an API for shared-memory multiprocessing programming in C/C++, and Fortran.

• How to tell if increasing cores will definitely improve the performance?
– Parallel efficiency

5

Reminder: Parallel Efficiency

• The parallel efficiency of a program is the ratio of the speedup factor S(n) and the number of
processors. Efficiency = S(n) / n

Version (LP 45) No of CPU cores Speedup vs. #1 Parallel Efficiency

1 with -O3 compiler flag 1 1 -

2 #1 with 2 OMP threads (outermost loop) 2 1.91x 0.95

3 #1 with 4 OMP threads (outermost loop) 4 3.76x 0.94

4 #1 with 6 OMP threads (outermost loop) 6 5.66x 0.94

• This virtually means that as long as we have free cores, we can improve the performance.

6

Reminder: GPU Processing Flow

Copy processing data

1

Execute Kernel in
Each Core3

Instruct the processing2

Copy back the result

4

• How can we run a code in GPU?

• Keywords to remember:
– SM (Streaming Multiprocessor)

– ThreadBlock & GridBlock

– Warp (SIMD execution)

– Kernel

7

LP 45 - CUDA versions

• Profile and monitor GPU codes:
– Nvtop

– NVIDIA Visual Profiler (nvvp)

– NVIDIA Nsight Systems (nsys)

– NVIDIA Nsight Compute (ncu)

• Results are gathered from NVIDIA GeForce GTX 1060 3GB, and RTX 3070 8GB
– Need to measure data transfers, too.

– Table of results

https://gitlab.com/Distributed-Compute-Protocol/legendre/legendre-pairs-algorithm#current-execution-time-measured-on-polydeuces

8

Branch Divergence

• Simultaneous Multiprocessors

• SIMD (or SIMT) Architectures

• Warp scheduling

Images’ source: NVIDIA and Illawarra Dragon Boat Club

9

Branch Divergence

• SIMT architecture and warp execution model

• Why is branch divergence important?!

Image source: NVIDIA

10

Optimization – Remove Branch Divergence

• Figure out permutations: 2 options
– Dynamically – by each thread

– Statically and inform all threads through (constant) memory
• But some parts of constant memory is already used. Solution?

11

LP 117 Optimizations – CUDA V2, Constant Memory

• GPUs have a dedicated memory section for constant memory.

• Utilizing constant memory significantly decreases the frequent memory accesses latency

• Let’s see the code.

12

CUDA V3, Shared Memory

• Problem with local variables and register spilling
– Compiler utilizes Global Memory to store local variables

– Global memory is cached, but if we want to specifically cache some variable, we should use Shared Memory

13

CUDA V4, Loop Unrolling

• Some of the operations are redundantly done by each thread.

• Unrolling and moving some loops around would be helping with that.

14

CUDA V5, Fuse PSD Calculations

• It turns out that inner-loop computations were not random!

• Take PSDs[4] into account as an example.

15

CUDA V6, Removing Shared Memory!

• NVIDIA Visual Profiler to the rescue

• GPU Occupancy is low because we have used up the shared memory available

16

CUDA V7, Cache A3 and A13

• Some of the calculations are redundant

• We can store and re-use those as intermediate computations.

17

CUDA V8, Ctrl + Z !

• Other than some minor optimization, revert everything.

• Why did this happen?

• Curse of optimization before validation

18

Several other optimizations that did not help

• Utilizing FFTW library on CPU

• Moving another dimension inside the kernel

• Move two other dimensions inside the kernel

• Moving A to global memory

• Perform reduction using shared memory.
– This is really cool by the way, but it didn’t help… pff

19

WebGPU v1

• Let’s dive right into the code!

20

Conclusions

• The same optimizations apply to L117 version.

• Some of them are device-specific, but they have little share of performance.

• Git and Make are your friends

• Profilers and debuggers are your best friends

• Never give up when it comes to optimization!
– Just remember the cycle for each update

Optimize

Profile

Validate

ConclusionExtensionsProposalsBackgroundIntroduction /3321

Thank You ☺

Instead of blaming darkness, let’s light a candle!

	Front Page
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	End
	Slide 21

