LeGendre Pairs,
A Hate Story Across the HPC Universe:

The Threads of Destiny

Distributive Book Club

August 16t , 2023 \

& LeGendre Pairs?!

e Again, this talk is not about LeGendre Pairs!

Thank you, Alex for helping!

e |tis about optimizing it.

But how to improve a program without fully understanding it?

* Only realize fundamental features, e.g.:

Various sections

Code semantics

Data and control flow
Repetition

Memory access pattern
Memory packing/unpacking

 Let’s see the code together!

Validate

& LeGendre Pairs — General Observations

Length 45

Length 117

3800+ lines of code

Several nested loops -> huge search space
— 126 * 844

Very large inner-most loop.

Two main sections:

1. Populate an array => fixed length (45)
2. Perform computation and check some conditions on them

Loop iterations:
— Imbalanced and independent

Deterministic

— No random variable

Several variables that can be packed

8500+ lines of code

Several nested loops -> huge search space
— 126 * 8412

Even larger inner-most loop.

Two main sections:

1. Populate an array => fixed length (117)
2. Perform computation and check some conditions on them

Loop iterations:
— Imbalanced and independent
Deterministic

— No random variable

Several variables that can be packed

& Reminder: Multi-threaded Version and Parallel Efficiency

* How does increasing cores affect performance?

 Let’s call OpenMP for help!

— Itis an API for shared-memory multiprocessing programming in C/C++, and Fortran.

 How to tell if increasing cores will definitely improve the performance?
— Parallel efficiency

Distributi -
& Reminder: Parallel Efficiency

* The parallel efficiency of a program is the ratio of the speedup factor S(n) and the number of
processors. Efficiency =S(n) / n

n Version (LP 45) No of CPU cores | Speedup vs. #1 Parallel Efficiency

with -O3 compiler flag

2 #1 with 2 OMP threads (outermost loop) 2 1.91x 0.95
3 #1 with 4 OMP threads (outermost loop) 4 3.76x 0.94
4 #1 with 6 OMP threads (outermost loop) 6 5.66x 0.94

e This virtually means that as long as we have free cores, we can improve the performance.

& Reminder: GPU Processing Flow

How can we run a code in GPU?

Keywords to remember:

SM (Streaming Multiprocessor)
ThreadBlock & GridBlock

Warp (SIMD execution)

Kernel

Copy processing data

Grid

Block (0, 0) || Block (1,0) || Block (2, 0)

|

Block (0, 1) Block (1, 1) Block (2, 1)

B

Block (1, 1)

Main

Memory CPU

Q Instruct the processing

A

Copy back the result

Execute Kernel in
Each Core

& LP 45 - CUDA versions

e Profile and monitor GPU codes:
— Nvtop
— NVIDIA Visual Profiler (nvvp)
— NVIDIA Nsight Systems (nsys)
— NVIDIA Nsight Compute (ncu)

e Results are gathered from NVIDIA GeForce GTX 1060 3GB, and RTX 3070 8GB

— Need to measure data transfers, too.
— Table of results

https://gitlab.com/Distributed-Compute-Protocol/legendre/legendre-pairs-algorithm#current-execution-time-measured-on-polydeuces

Distributi :
& Branch Divergence

e Simultaneous Multiprocessors

e SIMD (or SIMT) Architectures

Warp Scheduler (32 thread/clk) Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk) Dispatch Unit (32 thread/clk)

 Warp scheduling
Register File (16,384 x 32-bit) Register File (16,384 x 32-bit)

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT FP32 FP32 TENSOR TENSOR FP64 INT INT [FP32 FP32 TENSOR TENSOR

FP64 INT INT FP32 FP32 CORE CORE FP64 INT INT FP32 FP32 CORE CORE

FP64 INT INT FP32 FP32 FP64 INT INT FP32 FP32
FP64 INT INT |FP32 FP32 FP64 INT INT FP32 FP32

FP64 INT INT [FP32 FP32 FP64 INT INT [FP32 FP32

LD/ LD/ LD/ LD/ LD/ LD/ LDl LD/ SFU Lb/ LD/ LD/ LD/ LD/l LD/ LD/ LD/ SFU

ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST ST

Images’ source: NVIDIA and lllawarra Dragon Boat Club

& Branch Divergence

e SIMT architecture and warp execution model

if (threadIdx.x < 4) {

A, @
B; o
} else =
X O
Y: &
b

N -

A; B; Z;

 Why is branch divergence important?!

Image source: NVIDIA

& Optimization — Remove Branch Divergence

* Figure out permutations: 2 options
— Dynamically — by each thread
— Statically and inform all threads through (constant) memory

* But some parts of constant memory is already used. Solution?

& LP 117 Optimizations — CUDA V2, Constant Memory

* GPUs have a dedicated memory section for constant memory.
e Utilizing constant memory significantly decreases the frequent memory accesses latency
* Let’s see the code.

& CUDA V3, Shared Memory

* Problem with local variables and register spilling

— Compiler utilizes Global Memory to store local variables
— Global memory is cached, but if we want to specifically cache some variable, we should use Shared Memory

& CUDA V4, Loop Unrolling

 Some of the operations are redundantly done by each thread.
* Unrolling and moving some loops around would be helping with that.

& CUDA V5, Fuse PSD Calculations

* It turns out that inner-loop computations were not random!
 Take PSDs[4] into account as an example.

& CUDA V6, Removing Shared Memory!

 NVIDIA Visual Profiler to the rescue

 GPU Occupancy is low because we have used up the shared memory available

& CUDA V7, Cache A3 and A13

* Some of the calculations are redundant
 We can store and re-use those as intermediate computations.

Providence
' e

Brain Injury Services

Office Hours

Monday - Friday: 8:30 a.m. - 4:30 p.m.

Services communautaires aux victimes
de traumatismes craniens

Heures d’ouverture
lundi — vendredi: 8 h 30 - 16 h 30

& CUDA VS, Ctrl + 2!

e QOther than some minor optimization, revert everything.
 Why did this happen?

e Curse of optimization before validation

& Several other optimizations that did not help

e Utilizing FFTW library on CPU

* Moving another dimension inside the kernel
* Move two other dimensions inside the kernel
* Moving A to global memory

* Perform reduction using shared memory.
— This is really cool by the way, but it didn’t help... pff

& WebGPU v1

e Let’s dive right into the code!

Distributive

& Conclusions

* The same optimizations apply to L117 version.
 Some of them are device-specific, but they have little share of performance.

e Git and Make are your friends
* Profilers and debuggers are your best friends
 Never give up when it comes to optimization!

— Just remember the cycle for each update

Validate

Thank You ©

Instead of blaming darkness, let’s light a candle!

	Front Page
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

	End
	Slide 21

