
1 23

The Journal of Supercomputing
An International Journal of High-
Performance Computer Design,
Analysis, and Use

ISSN 0920-8542

J Supercomput
DOI 10.1007/s11227-020-03390-z

Ignite-GPU: a GPU-enabled in-memory
computing architecture on clusters

Amir Hossein Sojoodi, Majid Salimi
Beni & Farshad Khunjush

1 23

Your article is protected by copyright and

all rights are held exclusively by Springer

Science+Business Media, LLC, part of

Springer Nature. This e-offprint is for personal

use only and shall not be self-archived in

electronic repositories. If you wish to self-

archive your article, please use the accepted

manuscript version for posting on your own

website. You may further deposit the accepted

manuscript version in any repository,

provided it is only made publicly available 12

months after official publication or later and

provided acknowledgement is given to the

original source of publication and a link is

inserted to the published article on Springer's

website. The link must be accompanied by

the following text: "The final publication is

available at link.springer.com”.

Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-020-03390-z

1 3

Ignite‑GPU: a GPU‑enabled in‑memory computing
architecture on clusters

Amir Hossein Sojoodi1 · Majid Salimi Beni1 · Farshad Khunjush1

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
During recent years, big data explosion and the increase in main memory capacity,
on the one hand, and the need for faster data processing, on the other hand, have
caused the development of various in-memory processing tools to manage and
analyze data. Engaging the speed of the main memory and advantaging data local-
ity, these tools can process a large amount of data with high performance. Apache
Ignite, as a distributed in-memory platform, can process massive volumes of data in
parallel. Currently, this platform is CPU-based and does not utilize the GPU’s pro-
cessing resources. To address this concern, we introduce Ignite-GPU that uses the
GPU’s massively parallel processing power. Ignite-GPU handles a number of chal-
lenges in integrating GPUs into Ignite and utilizes the GPU’s available resources.
We have also identified and eliminated time-consuming overheads and used various
GPU-specific optimization techniques to improve overall performance. Eventually,
we have evaluated Ignite-GPU with the Genetic Algorithm, as a representative of
data and compute-intensive algorithms, and gained more than thousands of times
speedup in comparison with its CPU version.

Keywords Apache Ignite · Parallel processing · GPU · In-memory computing

1 Introduction

With the advancement of technology in today’s world, a vast amount of data is being
generated at high velocities from various sources, containing several data types.
These data are not valuable by themselves until they get analyzed and become useful

 * Majid Salimi Beni
 m.salimibeni@shirazu.ac.ir

 Amir Hossein Sojoodi
 amir.sojoodi@gmail.com

 Farshad Khunjush
 khunjush@shirazu.ac.ir

1 Department of Computer Science, Engineering and IT, School of Electrical and Computer
Engineering, Shiraz University, Shiraz, Iran

Author's personal copy

http://orcid.org/0000-0002-8634-7712
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-020-03390-z&domain=pdf

 A. H. Sojoodi et al.

1 3

and tangible information. Since new applications usually deal with large amounts
of data and require a lot of processing power, it is not possible to process them on a
single machine. Therefore, we need suitable tools that can perform these computa-
tions in a distributed manner so that they can provide more storage and processing
power.

For this purpose, Apache Hadoop [1], which is an open-source version of MapRe-
duce [2], was introduced. This platform could scale-out on any number of nodes,
and works in a distributed manner. Moreover, Hadoop has its distributed disk-based
file system, called the Hadoop File System (HDFS) [3], for managing and storing
data on the clusters.

Considering the advent of newer applications, faster data production, and the
demands to process these data, Hadoop’s limitations became more prominent [4].
Some of the restrictions are as follows: supporting only batch processing, offering no
support for real-time data processing, low-performance data processing due to the
disk I/O bottleneck, and lacking support of some applications like machine learning.
To overcome the issues mentioned, more advanced tools have been developed.

The main barrier, which limits Hadoop’s performance is its disk-based distrib-
uted file system. To eliminate this barrier and enhance performance, in-memory
platforms have been developed that store and process data on the main memory
across the cluster. These platforms eliminated the disk IO bottleneck in Hadoop
and revolutionized big data processing. Apache Spark [5] and Apache Flink [6] are
two well-known in-memory platforms that were introduced to overcome Hadoop’s
restrictions. They can analyze streaming data in real-time and support SQL. Moreo-
ver, Spark has provided a library to facilitate distributed machine learning [7].

Although these platforms have brought many new facilities, they still possess
some limitations. For example, Spark does not have a file management system itself
and relies on other platforms. It also does not support many algorithms; its stream
processing is not entirely real-time (it is micro-batch), and its latency is high in some
situations. In addition, Flink is more known as a stream processing platform rather
than a general-purpose processing engine.

Apache Ignite [8], as a recently released platform, is another distributed in-mem-
ory database for caching and processing big data. This platform provides some new
features and has tried to overcome previous platforms’ limitations. Ignite is suitable
for data analytics, transactional, and streaming jobs. Moreover, it supports distrib-
uted machine learning and unlike Spark, it has its own file system to manage data on
disk and main memory.

After the development of in-memory architecture and increasing RAM capacity,
the only factor that circumscribes data analytics’ performance is the processing unit.
In other words, the performance bottleneck has shifted from disk I/O to computation
[9]. Accordingly, performance can increase on in-memory platforms by using appro-
priate and faster processors.

GPUs have been introduced as an appropriate choice for data analytics and high-
performance computing. They are massively parallel processors with high process-
ing power and high memory bandwidth. GPUs can process data multiple times
faster than CPUs. A large number of simple, small, and efficient cores enable GPUs
to perform repetitive and similar operations rapidly, with high throughput. Due to

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

their architecture, GPUs are the proper choice for running machine learning, deep
learning, and real-time data analytics applications [9].

Given that in-memory platforms are currently CPU-based and use CPU to per-
form their computations, adding GPU-support could be an excellent approach to
remove their computation bottleneck. By doing so, users on these platforms will not
only benefit from the high speed of processing in memory, but they also will take
advantage of the processing power of GPUs. Previous studies have shown that using
GPU’s processing power in in-memory platforms such as Spark, Flink, and Storm
[10] has considerably accelerated their execution.

Manzi et al. [11] examined the feasibility and benefits of offloading some of the
spark core operations to the GPU. They ported several iterative and non-iterative
applications to the GPU, whose results showed about 17X Speedup for the K-Means
clustering algorithm. For other algorithms, like WordCount and RadixSort, there
was a marginal speedup due to data conversion bottleneck, which is the task of con-
verting data into GPU-friendly format.

HeteroSpark [12] was another GPU-accelerated architecture that used GPU’s pro-
cessing power for data and compute-intensive operations, which allowed the appli-
cations to use the GPU beside the CPU. This platform showed better performance
and energy efficiency versus Spark. HeteroSpark resulted in about 18X Speedup for
machine learning workloads.

Rathore et al. [13] combined Hadoop MapReduce and Spark to provide an effi-
cient and high-performance platform suitable for streaming processes. They used the
GPU as a co-processor for real-time big data processes, which resulted in higher
performance than its CPU implementation.

Asai et al. [14] provided an extension for IBMSparkGPU [15], which is a Spark-
based framework that executes Spark tasks on the GPU. They tried reducing the
number of data exchanges between the CPU and the GPU by eliminating redundant
data transfers. The result of their work on a machine learning application was about
1.3X acceleration.

Spark-GPU [16] was a CPU–GPU hybrid platform that also tried to utilize the
GPU in Spark. They examined various challenges of integrating Spark with the
GPU, and provided some solutions. They introduced a novel type of RDD [17]
called GPU-RDD that was suitable for use in the GPU’s native memory. Spark-GPU
was able to accelerate machine learning algorithms about 16.13X and SQL queries
4.3X compared to Spark.

G-Storm [18] was a parallel GPU-enabled system designed to process stream-
ing data, in which the GPU was used for its high throughput. The platform supports
various data types and applications, and its overhead for data processing workloads
is remarkably low. Their results showed that the platform achieved more than 7X
throughput improvement on continuous query and 2.3X in the matrix multiplication
application.

GFlink [19] is another distributed in-memory platform that utilizes GPU’s
memory bandwidth as well as its computation resources. To enhance the perfor-
mance of this platform, they deployed various methods and introduced an efficient

Author's personal copy

 A. H. Sojoodi et al.

1 3

communication mechanism between the JVM1 and the GPU. They implemented an
adaptive locality-aware scheduling method that resulted in higher performance ver-
sus the CPU-based implementation of Flink.

The integration of in-memory platforms and GPUs has been utilized in other
areas as well. Lunga et al. [20] used Spark and GPU processing power to process
several thousand terabytes of satellite images. Using GPUs, their results showed
an acceleration of about 400X in deep learning inference. Table 1 summarizes the
related work.

Due to the importance of this issue, Nvidia is also officially adding GPU-support
to Spark 3.0 for some data analytics, machine learning, and deep learning applica-
tions [21].

Apache Ignite, as a CPU-based platform, is not capable of utilizing the GPU
yet. Adding this feature, it can benefit from the high processing power of the GPU
to accelerate its computations. Thus, we have considered adding GPU-support to
existing Apache Ignite implementation. For this purpose, we have designed Ignite-
GPU: a GPU-enabled in-memory computing architecture on clusters. The proposed
platform enables Ignite to utilize GPUs to speed up applications that are data or
compute-intensive.

In this paper, we have examined various ways of integrating GPUs with Ignite,
and have introduced multiple techniques for better utilization of GPUs. We have
chosen the Genetic Algorithm as a workload to examine the proposed techniques’
effects on performance. Experimental results show a considerable performance
improvement of proposed work in the Genetic Algorithm, with the presence of
GPUs.

Table 1 A summary of related work

Related work Base platform(s) Utilized processor(s) WorkLoad(s) Acceleration

Manzi et al. Apache Spark GPU K-means clustering
Word count
Radix sort

17X
–
–

HeteroSpark Apache Spark Hybrid CPU–GPU Logistic regression
K-means clustering

18X
16X

Rathore et al. Hadoop/Apache Spark Hybrid CPU–GPU Stream More than 6X
Asai et al. Apache Spark GPU Logistic regression 1.3X
Spark-GPU Apache Spark Hybrid CPU–GPU K-means clustering

Logistic regression
SQL queries

5.71X
16.13X
4.83X

G-storm Apache Storm GPU Continuous query
Matrix multiplication

7X
2.3X

GFlink Apache Flink GPU SpMV 5.1X
Lunga et al. Apache Spark GPU Deep learning inference 400X

1 Java Virtual Machine.

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

This paper is the first attempt that utilizes GPU’s processing power in Apache
Ignite. Also, some of the techniques and optimizations used in this paper have not
been adopted in any of the related work, and the presented techniques may be appli-
cable to other platforms as well. It should be noted that it is not possible to compare
the proposed work with the related work, because they are not open-source; in addi-
tion, none of them officially support the Genetic Algorithm.

Our main contributions are as follows:

∙ We have examined the use of GPUs in Apache Ignite and identified challenges
ahead.

∙ We have come up with innovative solutions for integrating Apache Ignite, or
other distributed in-memory platforms, with GPUs.

∙ Based on Ignite, Ignite-GPU has been designed and implemented, which
addresses all existing challenges and utilizes the GPU through Apache Ignite
efficiently.

∙ Various APIs2 were provided for utilizing and easy use of GPUs on Ignite.
∙ Multiple optimization techniques have been applied to enhance the performance

of Ignite-GPU.
∙ Finally, we have compared the performance of proposed work with Ignite and

have evaluated the results of each of the optimizations.

The rest of the paper is organized as follows. Section 2 provides the necessary
background to read the paper and summarizes the architecture of the GPU and
Ignite. Section 3 describes Ignite-GPU, which first outlines the goals and challenges
ahead, and ultimately describes the solutions and optimizations. Experimental
results are presented in Sect. 4, and Sect. 5 is the conclusion and future work of the
paper.

2 Background

In this section, we briefly describe the key concepts required to read this paper. To
begin with, we discuss the Ignite’s execution model, then describe the GPU archi-
tecture and the CUDA3 [22] programming model.

2.1 Apache Ignite

Apache Ignite is a newly released open-source platform used for storing and pro-
cessing large amounts of data that can be distributed across the nodes in a clus-
ter. GridGain Systems open-sourced Ignite in late 2014, then it was accepted as an
Apache Incubator program.

2 Application Program Interface.
3 Compute Unified Device Architecture.

Author's personal copy

 A. H. Sojoodi et al.

1 3

The Apache Ignite architecture is based on storing data in RAM—in-memory
computing, which causes a dramatic increase in processing speed, compared to disk-
based processing engines. Ignite provides an easy-to-use interface for developers to
process a vast amount of data in real-time. Data in Ignite are stored as key-value
pairs on distributed caches, and each node of the cluster can have its own partition
of the data. Furthermore, Ignite automatically rebalances the data while adding or
removing a node from the cluster. All of these transactions in Ignite are ACID [23].
Not only can it be run in standalone mode, but it also has the ability to be deployed
in the cloud, containerized, and provisioning environments.

As it is illustrated in Fig. 1, the main features of Ignite are Data Grid, Com-
pute Grid, Service Grid, SQL Grid, Bigdata Accelerator, Streaming Grid, Machine
Learning, Third-party persistence store, and ORM support. All features are pro-
vided for application developers in a variety of APIs, enabling them to produce their

Docker AWS Google Mesos YARN Kubernetes

Na�ve Persistence (Flash,
SSD, Intel 3D Xpoint)

Third-party persistence
(HDFS, NoSQL, RDBMS)

IN-MEMORY STORAGE
(On-heap & Off-heap)

Key-value
store Streaming BigData

Accelerator
ORM

Support

Compute
grid

Service
grid SQL grid Machine

Learning

JDBC ODBC .Net C++ PHP Memcached

Fig. 1 Ignite main features. Source: Adapted from Ref. [24]

Node 1

Node 4

Node 3

Node 2

Cluster
Network

Compute
Task 1

Compute
Task 2

Compute
Task 3

Data/Task
Scheduler

1

2

3

Fig. 2 Ignite Compute Task procedure. Source: Adapted from Ref. [25]

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

desired applications. It should be mentioned that all of these APIs are running on the
CPU.

Figure 2 shows the procedure of a computing task in Ignite. When an application
developer assigns a task to a node, the node acts as the master (in this figure, node
1 is master), partitions the input data, and delivers the data alongside an executable
task to each node through the network (Step 1 and 2). This executable job and its
corresponding data are called a Compute Task in Ignite’s environment. Then, while
each node completes its share of computation, the results are returned to the master
(Step 3).

It should be noted that the data are distributed among nodes through Ignite’s in-
memory caches. Application developers can set these caches to be shared among
all (or some) nodes or be exclusive for each node, based on their application and its
requirements. Ignite manages the accesses to these caches automatically, and users
are not involved in these issues.

2.2 GPU, CUDA, and JCUDA

GPUs are used as powerful co-processors alongside CPUs and are utilized in gen-
eral-purpose computing due to their architecture, programming model, high perfor-
mance, and energy efficiency. One of the applications of GPUs is high-performance
data analytics [9] that they are used to address the insatiable desire for faster data
processing and computation. Because of their massively parallel processing capa-
bilities, GPUs are able to process data with much more throughput than the CPU,
making them a good candidate for compute-intensive operations and iterative

Mul�-processor 1

Cores

Mul�-processor N

Cores

. . .
Device Memory Main Memory

CPU

GPU

Fig. 3 The GPU architecture model

Author's personal copy

 A. H. Sojoodi et al.

1 3

algorithms. Due to their high processing speed, the GPUs are also being used for
real-time processing [9, 18].

As Fig. 3 demonstrates the GPU architecture, they are consist of a large number
of cores grouped as multi-processors. Based on a scheduling policy, all of the cores
of a multi-processor execute a similar operation on different data. This architecture
is called Single Instruction Multiple Data (SIMD). All of these multi-processors
fetch their corresponding data from the device memory, directly connected to the
main memory. Not only the device memory has very high bandwidth, but it also
exhibits low latency.

Threads in the GPU programming model are categorized as thread grids, each
of which contains multiple thread blocks (thread groups). While each device is the
unit of resource allocation to thread grids, multi-processors are the unit of resource
allocation to thread blocks. These thread blocks contain smaller units, named warps,
that are dynamically scheduled on multi-processors by warp schedulers. Processing
resources like registers and shared memory are shared between threads in a thread
block. It should be remarked that threads reside on the GPU (named device threads)
and on the CPU (named host threads) are different. Device threads are more light-
weight, and their creation and context-switch costs are considerably lower than those
of the host threads.

GPU occupancy is one of the most critical factors, having a significant effect on
GPU’s performance, defines as the ratio of active scheduling units to the maximum
number of available ones. Depending on the GPU’s compute capability, its active
scheduling units should be maximized, and its processing power should be fully uti-
lized to gain more remarkable performances.

GPU programs are typically written in CUDA or OpenCL [26]. The NVCC4 [27]
translates the CUDA code into two parts: one for running on the CPU, and one for
running on the GPU. The kernel is referred to that part of the code that runs on the
GPU. Then, the NVCC compiler converts the GPU part to PTX5 [28]—which is a
pseudo-assembly language—and eventually, the graphics driver turns it into binary
code, which runs on the GPU cores.

To exploit the GPUs’ resources like CUDA kernels in Java applications, we need
a communication bridge that can establish a connection between CUDA and Java.
Two of the most famous options are JCUDA [29] and JNI6 [30]. Although JCUDA
has a higher development complexity, it has a better performance than JNI [31].
Containing a binding to CUDA, JCUDA enables us to load and execute CUDA ker-
nels in Java programs. In addition, it provides facilities for allocating memory on the
host and the device and transferring data between them.

Typically, to run a task on the GPU, one needs doing the following three steps in
consequence:

1. Copying the kernel required data from the host to the device memory.

4 Nvidia CUDA Compiler.
5 Parallel Thread Execution.
6 Java Native Interface.

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

2. Launching the kernel.
3. Returning the result data from the device to the host memory.

Transferring data back and forth between the host and the device memory is costly
and can result in performance degradation. Gregg et al. [32] showed that the required
time to perform a particular task on the GPU, considering the data transfer time can
be 2 to 50X greater than there is no data transfer. Hence, one should try to eliminate
unnecessary communications at design time, to gain more performance.

3 Design and architecture

Firstly, this section discusses the design goals and challenges ahead in the integra-
tion of GPUs with Apache Ignite. Then, the design that addresses the problems
comes afterward.

3.1 Design goals

In this design, we have tried to pursue the following goals:

∙ Feasibility: One of our most significant goals is to show that Apache Ignite can
be integrated with GPUs successfully. Therefore, Ignite can use GPUs alongside
CPUs, as co-processors, to accelerate its processes.

∙ Performance: One of our other primary goals is to achieve higher performance
compared to Ignite’s CPU implementation to accelerate the processing of user
applications.

∙ Flexibility: This platform should allow developers to implement their custom
applications on the GPU, and adjust the parameters of their applications, accord-
ing to their requirements.

∙ Ease of Use: The provided platform needs to be easy to use so that the applica-
tion developers can use it effortlessly. For this purpose, we need to implement
suitable APIs to provide the desired functionalities in working with GPUs.

∙ Portability: Application developers should be able to deploy this platform on any
machine, equipped with a General-purpose GPU (GPGPU), without any particu-
lar changes.

∙ Scalability: Because Ignite is a distributed platform, and can scale on thousands
of nodes, its GPU version must also be able to distribute on any number of
nodes.

3.2 Challenges

Ignite applications—which are primarily data analytics, exhibit iterative behavior,
and are suitable for running on GPUs. However, there are challenging obstacles in
integrating GPUs into Ignite. Addressing these challenges efficiently will result in

Author's personal copy

 A. H. Sojoodi et al.

1 3

dramatic performance improvement and better utilization of existing processing
resources. We explore these challenges in the following.

∙ Data conversion overhead: Data in Ignite are stored as JVM objects, which are
unsupported by GPUs. Before sending it to the GPU, the data should be con-
verted to a GPU-friendly format. This conversion consumes much time, which
may even cause speed-down [2].

∙ Data type support: Supporting all available data types on GPUs requires exces-
sive programming efforts, including design, development, and test. In fact, for
each data type, a new GPU kernel and data transfers are required.

∙ Data transfer: Frequent data transfers between the host and the device are time-
consuming and cause performance degradation. To cope with this challenge,
we should omit redundant data transfers and keep the working set on the device
memory as long as possible. Minimizing these unnecessary data exchanges, dra-
matically increases performance [14].

∙ Insufficient device memory: According to user applications, the data volume may
be larger than the size of the device memory, which leads to program crashes or
data losses. Therefore, because of the limited capacity of the device memory, a
couple of dynamic pre-checking tests should be performed.

∙ Garbage collection: In some iterative algorithms, a particular kernel might be
launched repeatedly with various input data. These recurring launches of the
kernel associated with frequent memory allocations and deallocations for the
data transfers. Our studies have shown that these allocations and deallocations
are also time-consuming.

∙ Utilizing the GPU: GPUs possess high processing power, and they would be
advantageous if only their resources are adequately utilized. It is essential for the
platform to use the maximum available processing potential of GPUs.

∙ Memory coalescing: Due to the GPU architecture, one of the key factors affect-
ing performance is how threads access the memory. When this access is coa-
lesced—consecutive GPU threads access consecutive memory units (sequential
access), performance will be better.

3.3 Ignite‑GPU overview

Ignite-GPU is an in-memory architecture, enabled to operate in a heterogeneous
cluster of CPU–GPU. This framework delivers all benefits of standard Ignite; more-
over, it can handle some Ignite applications that do not respond in a reasonable time.
In our design, we have tried to overcome all the mentioned challenges and achieve
the desired goals. On this platform, GPUs have been used to execute data-intensive
and compute-intensive applications. So, Ignite application developers can utilize the
GPU alongside the CPU. It should be noted that the provided platform is designed
with the assumption that there is only one GPU on each node.

Ignite includes multiple possible execution scenarios. One of which is as fol-
lows: first, the master node delivers required initial data alongside a process to the

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

workers. Next, each worker receives its data, processes it, and returns results to the
master. Ultimately, every node waits for the other nodes to synchronize. If the appli-
cation is an iterative one, this procedure is repeated. Similarly, Ignite-GPU follows
this proceeding with some differences: When the data reach the workers, they trans-
mit the data to the GPU instead of processing it on the CPU. On each node, the GPU
performs the corresponding processing and pushes the results data to the Ignite
associated caches to be sent to the master for synchronization.

Since Ignite is developed with Java, to fulfill the need for establishing a connec-
tion between Java and CUDA, we used JCUDA. JCUDA is a programming inter-
face that can be used in Java programs to invoke CUDA functions, including user-
defined kernels. Using this interface, programmers can directly call CUDA kernels
and transfer data between host and device in their Java codes without being worried
about the technical details of bridging between Java runtime and CUDA runtime
[33]. In the following, we describe the solutions proposed for each challenge.

The first problem was the Data Conversion Overhead, which was the cost of con-
verting JVM objects to a GPU-friendly format. In the cases that we need to access
the data itself on the GPU, we should pay off the cost of converting the objects to
GPU-friendly data types. In this situation, first, each node converts the received
data, before forwarding it to the GPU, into the array format—or any appropriate
form. Then, the required space should be allocated on the device (which JCUDA
provides this possibility). Finally, the data should be sent to the GPU for launching
the kernel.

Apart from converting data to the appropriate format, we need to match the ker-
nel input data type to the data sent from the host. One naïve solution is to implement
a separate kernel for each data type which requires a lot of programming efforts and
reduces code reusability. To overcome this problem, called Data Type Support, we
proposed a data transfer mechanism. The data, regardless of its type, on the host are
converted into a byte array and sent to the GPU. On the device side, we have imple-
mented a union called data_unit that extracts the data with the desired type from
this byte array. This data can represent the defined types of data_unit union like
character, string, integer, long, and double. As demonstrated in the following, this
union is defined in the kernels file and supports the mentioned types of data.

typedef union {
char c;
int i;
double d;
long l;
char s [SIZE];

} data_unit;

By retrieving the desired data type from the union, the compiler does data con-
version automatically and fetches that type of data. Using this mechanism, there is
no need to implement a new kernel to support each data type, and regardless of the
data type of the application, we can support it with the same kernel.

Author's personal copy

 A. H. Sojoodi et al.

1 3

The subsequent challenge ahead is transferring the data between the host and the
device, which Ignite-GPU handles it efficiently. Without the involvement of appli-
cation developers, Ignite-GPU converts the data to the appropriate format, sends
it to the device, and returns the results to the host after kernel execution. Efficient
data transfer and reducing unnecessary data copies can have a significant impact on
the performance; therefore, we have tried to omit redundant copies and keep the
in-use data on the device memory as long as possible. We have employed a tech-
nique named bottom-up integration to eliminate redundant data transfers—that will
be described further in the current section.

The next issue is insufficient device memory. In this platform, each node com-
putes the size of the data before sending it to the GPU. If the data size is bigger than
the device memory capacity, gives a warning to the user and asks whether to divide
data into smaller chunks. If the user accepts, the data will be broken down into a fit-
ting power of 2, prior to sending it to the GPU.

Due to the inherent characteristic of Ignite applications—that are mostly iterative,
they may cause Garbage Collection overheads for their kernel calls. Therefore, we
have managed device and host memory allocations/deallocations within the whole
program. In Ignite-GPU, each cluster node has the duty of allocation and dealloca-
tion for its data on the host and device. Considering that most of Ignite applications
have iterative behavior, a couple of allocation–deallocation is needed for each kernel
call in every iteration. In Ignite-GPU, all of the required data spaces are allocated
at the beginning of the program. They are reused during the iterations, and all of
them are released before the program’s termination. It reduces the overheads of fre-
quent memory operations for kernel calls in iterative algorithms and improves the
performance.

One of the other important challenges is Utilizing the GPU. Ignite-GPU provides
this flexibility to application developers to adjust the program’s parameters based
on their needs and their GPU architecture. Application developers can set all of the
GPU associated parameters like blockSize. By setting these parameters due to the
GPU hardware specifications, the GPU resources can be more utilized.

The final challenge is Memory Coalescing, which is related to how data is
accessed on the GPU. In this platform, all memory accesses are coalesced, which
means all GPU threads have serial access to the memory, and no memory access
conflict occurs.

Considering the requirements of using the GPU, we have provided various APIs,
including initializing the driver, creating context, and module loading (which loads
the PTX file) on each cluster node. Also, there are specific APIs for launching a ker-
nel and transferring data from host to device and vice versa.

To provide more flexibility for application developers, they can specify their
desired existing kernel name to access it through their program. Moreover, they can
personalize the existing kernels or implement new ones in the Kernels.cu file and
call them.

To port an application to the GPU, initially, it is necessary to analyze the applica-
tion carefully and identify its time-consuming parts. To that end, in the first phase,
we profile the application, identify its time-consuming modules, and try running
those modules separately on the GPU. Calling each kernel needs data transfers

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

between the host and device, and takes much time and leads to performance degra-
dation. In the second phase, we tried to integrate these separate kernels and maintain
the desired data on the device, instead of consecutive copies between the host and
the device. By implementing this feature, all the separated kernels are performed
seamlessly on the GPU, and the output of every kernel will be the input of the next
one. Consequently, the data are once copied onto the device and once it is copied
back to host.

Figure 4 demonstrates two execution timelines and their integration procedure.
As can be seen, there are two kernels on the left side that each of which needs two
data transfers (One for the host to device and one for vice versa). The data will not
remain on the device between two consecutive kernel executions, and it causes two
redundant data transfers between them. After execution of the first kernel, the data
are copied to the host and then copied back to the device memory to run the second
kernel. In contrast, on the right timeline, two redundant data transfers are omitted,
and the data remain on the GPU between two kernel executions. The first kernel
passes its data directly to the second kernel, and both kernels are executing in suc-
cession. By doing so, many redundant data transfers are omitted which causes a
remarkable performance improvement.

Similar to Apache Ignite, Ignite-GPU is scalable and can operate on any num-
ber of nodes on a cluster. In this platform, each node is responsible for initializing
and managing its GPU. At the beginning of the program, the master node broad-
casts Kernels.cu file to all nodes using IGFS (Ignite File System). This will make the
application developer needless to copy the kernels file on each node manually. Even,
by modifying the kernels file in the master, all nodes will have the same kernels.

Host

Kernel 1

Kernel 2

Host

Kernel 1,2

Data Transfer
(H2D) 1

Data Transfer
(D2H) 1

Data Transfer
(H2D) 2

Host Host

Data Transfer
(D2H) 2

Data Transfer
(H2D) 1,2

Data Transfer
(D2H) 1,2

Host

Time

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
tO

m
i�

ed
 S

ec
�o

n

Fig. 4 Bottom-up consecutive kernels’ integration procedure

Author's personal copy

 A. H. Sojoodi et al.

1 3

After receiving the file from the master, each node generates a PTX file based on
its CUDA runtime version to run it on its device(s). If the CUDA versions or GPUs
models vary in other nodes, this method will be more reliable, ensuring there is no
problem in execution. Besides, the generated PTX will be optimal for running on the
underlying hardware.

3.4 Optimizations

We have implemented various techniques to improve performance and measured the
impact of each of these methods, which will be described in the following.

∙ Using CUDA Streams: Due to dealing with large amounts of data in this plat-
form, copying data between host and device is extremely time-consuming,
and GPU cores will be idle during this copy operation. To address this prob-
lem, we use CUDA streams, which is a technique to launch multiple operations
asynchronously on GPU. In this way, data-transfer and computation phases are
overlapped. Commonly used for large data volumes, this method results in more
efficient use of the GPU and increases performance. For more optimization, we
have only created streams once at the first iteration of the program, and in the
next kernel calls, we use the previous streams. Memory is pinned here to prevent
the Operating System from swapping out the memory pages as a part of the Vir-
tual Memory management system. Ignite-GPU handles the creation and manage-
ment of the streams automatically. Also, we have provided this flexibility for the
application developers to use the streams optionally. By setting a Boolean flag
in the configurations of the program, they can specify whether they want to use
streams or not, and they can also determine the number of streams. The number
of streams can be set according to the data size and problem type.

∙ Using Global/Shared Memory: Global memory is available for all GPU threads,
but shared memory is only shared between the threads inside a thread block.
Shared memory is commonly used for applications that have more data reuse.
It has a smaller size and faster access rate than the global memory. We allow
application developers to use shared or global memory on demand by setting its
corresponding configurations.

∙ Using Constant Memory: Constant memory is an excellent candidate to be used
in the applications that we need to store static and constant data on the GPU,
and frequently access it. This memory is read-only by the GPU threads and has
a small size. Application developers can utilize constant memory in Ignite-GPU
based on their application’s requirements to gain more performance.

∙ Copying Data indexes: Ignite stores the data in the key-value format in its
cache. Depending on the application’s type, in some cases, we can copy the data
indexes to the GPU instead of transmitting data itself. While each of the data is
mapped to a unique key in the cache, there is chance of working on data indexes
or reproducing the data from its indexes on the GPU side. Not only does it cause
a substantial reduction in the amount of the sent data to the GPU—resulting in
faster data transfer, but it also makes the data independent of its type. That is,

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

regardless of the data type, we can perform our operation on the GPU, and the
Data Conversion is somehow evaded.

4 Experimental results

In this section, Ignite-GPU’s performance is evaluated. We initially describe the
experimental environment, then present the observed results.

Every experiment is performed ten times, and the reported results represent the
average of these ten experiments. Besides, all the reported results are the average
execution time of one generation of the Genetic Algorithm, which is equivalent to
the execution time of an iteration of the algorithm.

4.1 Experimental environment

We performed our experiments on a cluster with 4 GPU-equipped nodes. Each
node is a XenServer VM and has 16 dedicated CPU cores with 2.0 GHz Intel Xeon
E5-2620 and 30 GB of memory. Moreover, each node has an NVIDIA GeForce
GTX 680 GPU with 1536 CUDA cores and 1.12 GHz clock rate, which has 2 GB
of memory with 3.0 GHz memory clock and 173 GB/s of memory bandwidth. The
CUDA version is 8.0, and the installed operating system on all nodes is Ubuntu
16.04. Our architecture is based on Apache Ignite 2.7.0.

4.2 Workloads

The Genetic Algorithm, which is officially supported by Ignite, can be considered
as a good candidate to be evaluated in this platform and run on GPU through Ignite.
The computational jobs in most Ignite applications are modeled as Compute Tasks
and they are designed based on this concept. Similarly, Ignite’s Genetic Algorithm
is based on this concept, so it can be a good representative of many other Ignite
applications. Moreover, due to its iterative behavior, it is similar to other Ignit’s
machine learning algorithms in this respect, so the provided solutions for this algo-
rithm would be applicable to other machine learning algorithms. On the other hand,
the Genetic Algorithm is compute and data-intensive and its time complexity grows
with the increase of population size that these types of applications are suitable to
run on GPUs.

In the following, we first describe the Genetic Algorithm and then explain how
this algorithm executes on Ignite-GPU.

4.2.1 Genetic algorithm

Genetic Algorithm represents a subset of Ignite machine learning APIs and is
suited to find the optimal solution in large and complex datasets. This algorithm
is deployed in many real-world applications like automotive design, computer

Author's personal copy

 A. H. Sojoodi et al.

1 3

gaming, robotics, investments, traffic/shipment routing, etc. Genetic Algorithms
consist of four main stages: selection, fitness calculation, crossover, and muta-
tion. This algorithm initially produces an initial population that is a large set of
possible solutions (chromosomes)—and each chromosome is made up of genes.
In each iteration, it selects a set of best solutions based on an evaluation crite-
rion and performs mutation and crossover operations on this subset to produce
better-fitted chromosomes for the next generation. This procedure is iterated
until it approaches the optimal solution [24]. The Genetic Algorithm here uses
Roulette Wheel for the selection, as well as Single Point crossover and Swap
mutation.

In Ignite, most of the computational operations are considered as a Compute
Task and will be sent to the nodes to run. The initial population generated ran-
domly is placed in the population cache and partitioned between nodes. Gene
Cache holds all possible genes and gives each node a copy. The overall scheme
of this algorithm in a distributed environment on Ignite is shown in Fig. 5. As
shown, Each node operates and performs Genetic operations on its partition of
data and at the end of each iteration, returns its results to the master node.

The problem we focused on to solve by the Genetic Algorithm is a character
matching problem that tries to reach the “HELLO WORLD” string from alpha-
bet letters. In this case, Gene Cache is filled with A to Z and Space charac-
ters, and the optimal solution is “HELLO WORLD” Besides, a fitness score is
used to measure the optimality of each solution. During each iteration, the algo-
rithm evaluates newly generated chromosomes—each of which is a string with a
length of eleven, by calculating their fitness. The Fitness criteria is the similarity
of each chromosome to the “HELLO WORLD” string. In this problem, the chro-
mosome length is 11 and is equal to the length of the “HELLO WORLD” string.

F = F1 + F2
C = C1 + C2

M = M1 + M2

Ignite Compute Grid

F1 , C1 , M1

F2 , C2 , M2

F = Fitness Calcula�on
C = Crossover
M = Muta�on

Node 1

Node 2

Aggrega�on of Results

Fig. 5 Genetic Algorithm execution model in Ignite. Source: Adapted from Ref. [24]

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

4.3 Our methodology

To implement the Genetic Algorithm on Ignite-GPU, in the initial implementation
phase, we first analyze the algorithm. Profiling results demonstrate that the most
time-consuming parts of the algorithm are the main functionalities of the Genetic
Algorithm—selection, mutation, crossover, and fitness evaluation. Next, we try per-
forming each of these time-consuming functionalities independently on the GPU
(i.e., four GPU kernels). To implement any program on the GPU, it is essential that
one sends data in batch to the device memory. Ignite sends chromosomes one by
one to all nodes for processing, so we have to transform it to batch-like data parti-
tioning. Making data partitioning policy appropriate to the GPU execution model
reduces data partitioning overheads and the number of Ignite’s cache accesses, and
also eliminates the overheads of creating a Compute Task for each chromosome.

Figure 6 demonstrates our naïve implementation of Ignite-GPU’s execution time
versus Ignite. This initial implementation shows about 1.3X speedup for population
size 1K, 16X for 10 K, 296X for 100K, and 2859X for 1 million in comparison with
the standard version of Ignite. In other words, speedup increases with an increase in
population size. For larger input data, our naïve implementation showed better per-
formance in comparison with another state-of-the-art CUDA implementation of the
under-study problem that gained about 1500X speedup for 1 million chromosomes
[34]. Furthermore, the current Ignite implementation of the Genetic Algorithm has
a time complexity that grows too much for larger population sizes. As demonstrated,
it does not progress with population sizes larger than 1M, so it is not reasonable for
one to use Ignite’s implementation of such applications.

While performing the four operations of the Genetic Algorithm separately
on GPU, the data are frequently transferred between host and device. The main

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1K 10K 100K 1M 5M 10M

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Population Size

Ignite Ignite-GPU (Naive Implementation)

Fig. 6 Performance of Genetic Algorithm on Ignite and the naïve implementation of Ignite-GPU on a
single node (block size: 32)

Author's personal copy

 A. H. Sojoodi et al.

1 3

Selec�on
Selec�on
Crossover
Muta�on

Fitness Eval

H2D 1

Host

Time

Pe
rf

or
m

an
ce

 Im
pr

ov
em

en
t

M
er

ge
d

Se
c�

on

Crossover

Muta�on

Fitness Eval

D2H 1

Host

Host

H2D 2

D2H 2

H2D 3

Host

D2H 3

H2D 4

Host

D2H 4

H2D 1,2,3,4

D2H 1,2,3,4

Host

Host

H2D

D2H

Data Transfer (Host to Device)

Data Transfer (Device to Host)

Fig. 7 The bottom-up integration scheme for the Genetic Algorithm

1

10

100

1000

10000

100000

1000000

10000000

1K 10K 100K 1M 5M 10M

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Population Size
Ignite-GPU (Naive Implementation) Ignite-GPU (After Kernels' Integration)

Fig. 8 Performance of the Genetic Algorithm on Ignite-GPU, before and after bottom-up kernels’ inte-
gration procedure on a single node (block size: 32)

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

bottleneck that restricts gaining more performance is the overhead of these frequent
data transfers. To resolve this problem, we integrate these four operations—selec-
tion, crossover, mutation, and fitness evaluation, using our bottom-up integration
technique and implement all of them as one kernel. This technique eliminates seven
data transfers between host and device. That is, the data are copied into the device
memory and returned back to the host only once. Figure 7 illustrates the scheme of
this integration procedure for the Genetic Algorithm, and Fig. 8 represents the effec-
tiveness of this integration. As can be seen in this figure, for all population sizes, the
bottom-up kernels’ integration caused about 3X acceleration in comparison to the
naïve implementation.

Each stored chromosome in Population Cache is considered as a JVM object, and
we need to convert it to a suitable format and data type to be used in the GPU. For
this purpose, each node copies its Population Cache’s data into an array in sequence,
then passes the array to the GPU. The array can have the pre-determined data types
of data_unit union.

The nature of the distributed Genetic Algorithm is such that each node must send
its data to the master node at specific time intervals (at the end of each iteration)
for synchronization. So, the master node receives the results of all nodes at the end
of each iteration. These results include the chromosomes in which crossover and
mutation operations are performed on them, and their fitness is calculated. Master
sorts the results according to their fitness and merges them. If the algorithm does not
reach the optimal solution, the subsequent iteration begins.

To run all Ignite-GPU instances with the same arbitrary configuration, we have
created another shared Ignite cache, in which we broadcast all the required settings
needed for utilizing the GPU, such as using streams and their number, using shared
memory, and so on. Application developers can specify them at the beginning of the
program. They can also modify the Evaluation device function, which is responsible
for fitness assessment based on their type of problem, and write their fitness assess-
ment criterion. We have delivered the capability, which allows users to use shared
memory based on their problem type. However, our results showed that using shared
memory in the HELLO WORLD problem is unbeneficial.

Assigning fair work to the GPU threads can improve performance by better uti-
lization of GPU. Accordingly, we assign one chromosome to each thread to process
and operate on it. By doing so, we eliminate the need for some syncthreads(), which
is a performance bottleneck, and resolve the memory coalescing challenge.

One of the other optimizations applied to this application is the use of CUDA
streams, which enables users to determine the number of streams based on the size
of data. By using streams, performance improves about 1.8X. Naturally, the number
of streams can vary slightly depending on the size of the input data and application
type. In some situations, data are not divisible by the number of streams or block
size. To overcome this problem, we add padding to the end of the last data parti-
tion. This padding contains a copy of the most valuable chromosomes that helps the
Genetic Algorithm to converge in fewer iterations.

Figure 9a, b evaluates the effect of using CUDA streams on performance for dif-
ferent numbers of streams and population sizes. As illustrated, for small population
sizes, using streams is not beneficial, and using one stream, which is equal to do

Author's personal copy

 A. H. Sojoodi et al.

1 3

not using streams, shows a better performance. In other words, utilizing streams for
smaller data sizes is unbeneficial because the creation, destruction, and division of
data between streams cause some overhead. However, for large populations, per-
formance improves by using streams. As illustrated, the execution time by using
four, eight, and sixteen streams is fewer than no-stream (one stream) mode for large
population sizes. Moreover, utilizing sixteen streams shows more execution time

0

200

400

600

800

1000

1200

1400

1600

1800

1K 10K 100K

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Population Size

1 Stream 4 Streams 8 Streams 16 Streams

(a) For small population sizes.

0

50000

100000

150000

200000

250000

300000

350000

1M 5M 10M

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Population Size
1 Stream 4 Streams 8 Streams 16 Streams

(b) For large population sizes.

Fig. 9 Performance of Ignite-GPU with streams and without streams on a single node (block size: 32)

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

compared to eight and four streams due to the overhead. Thus, there should be a
trade-off between the number of streams and the size of population, and it is on the
user to choose the appropriate number of streams based on their application.

Finally, by applying other optimizations, such as using constant memory and
removing garbage collection overheads of device/host pointers, the results show
about 31% performance improvement for 10M population size over previous optimi-
zations. Figure 10 compares the cumulative performance of using constant memory,
removing garbage collection overheads, utilizing 8 streams, and applying bottom-
up integration with the time there is garbage collection overheads and no constant
memory. Although the performance improvement of using constant memory and
removing garbage collection overheads is marginal, they indeed affect performance,
and it is better to apply these optimizations.

On top of that, data in the Ignite’s cache are stored as key-value pairs and is dis-
tributed within the cluster. For example, in the HELLO WORLD problem, each
character (gene) is stored as a couple of (long, object) pairs in the cache. A long
key can be used to retrieve an object from the cache and to convert it to the desired
data type. There are some cases that instead of dealing with the JVM objects on the
GPU, we can operate only on its long indexes if there is a one-to-one relationship
between key-value pairs. In these types of problems, keys can be used instead of
the actual data to increase the data access rate. This also results in reducing the data
size, which diminishes data transfer overhead and occupies less volume of device
memory. Moreover, the kernel is independent of the data type, and there is no need
to use data_unit union anymore.

Although this idea can be applied to the crossover, mutation, and selection
phases of the Genetic Algorithm, it may not be applicable to other phases (e.g.,

1

10

100

1000

10000

100000

1000000

1K 10K 100K 1M 5M 10M

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Population Size
Ignite-GPU (After Kernels' Integration) Ignite-GPU (All Optimizations)

Fig. 10 Effect of using constant memory and removing Garbage Collection overheads on performance
on a single node (streams: 8, block size: 32)

Author's personal copy

 A. H. Sojoodi et al.

1 3

fitness evaluation) that need access to the actual data. In these situations, data can be
retrieved from its key on the device, using a pre-constructed hash table on the GPU.
This hash table has to be created at the start of the program on the device memory of
each client; then, it can be used for retrieving data from their key.

Algorithm 1: Pseudo-code of Ignite-GPU for Genetic Algorithms on
the master node.
1 //Genetic Algorithm data structure and details:
2 ChromosomeLength ← L
3 GenesPopulation ← {List Of Genes}
4 //Execution configurations (e.g.):
5 MaxIterations ← 100
6 PopulationSize ← 1000
7 CUDAStreams ← 8
8 GPUBlockSize ← 32
9 ComputeTask ← A Callable Method //To execute on workers

10 Configure in-memory data caches of the cluster
11 Configure Ignite File System (IGFS)
12 Initialize cache with initial population
13 Copy CUDA source file and other configurations to IGFS
14 Iteration ← 0
15 while Iteration ≤ MaxIterations do
16 Partition and distribute current population among the workers
17 Send ComputeTask to all nodes
18 Wait for the results
19 Gather results from workers
20 Sort(results)
21 if TerminationCriteria is met then
22 Log the optimal solution
23 break
24 end
25 Iteration ← Iteration+ 1
26 end
27 Send Terminate signal to workers
28 Clean up caches and IGFS

To sum up, Algorithms 1 and 2 illustrate the process of running Genetic Algo-
rithms on Ignite-GPU on both master and worker nodes. As it is presented in Algo-
rithm 1, the application developer should specify their Genetic Algorithm’s data
structure, configurations, and other problem-specific details in lines 2 and 3. Next,
in lines 5 to 8, users can adjust execution configurations like the maximum num-
ber of iterations, initial population size, and also some GPU-related parameters like
the number of CUDA streams and block size. Line 9 is the process of creating a
Compute Task, which is the desired computation (process), which will run on the
worker nodes. Then in lines 10 and 11, required Ignite in-memory caches are con-
figured, and in line 12, they are being initialized with a randomly-generated initial
population.

In the 13’th line of the algorithm, the CUDA source code (Integrated kernels) is
shared between nodes to run on their GPUs. Later in the While loop, the operation

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

of data and computation distribution, and gathering the results is performed until it
reaches the maximum number of iterations or finds the optimal solution. Finally, the
master node sends the termination signal to all workers and cleans up the allocated
memories and configurations.

Algorithm 2: Pseudo-code of Ignite-GPU for Genetic Algorithms on
worker nodes.
1 Wait for a job from master
2 Receive the submitted configurations
3 Get CUDA source file from IGFS
4 Using JCuda, attach the CUDA binary code to the running JVM
5 Initialize the GPU and allocate required memory on host and device
6 if UsingCUDAStreams==TRUE then
7 Create and manage streams and corresponding events
8 end
9 while ComputeTask do

10 if Terminate signal is received then
11 Deallocate memories of the host and the device
12 Clean up configurations
13 break
14 end
15 Get the population from Ignite cache
16 Convert the population to ByteArray
17 Transfer ByteArrays to GPU using CUDA streams
18 Launch the GPU Kernel to perform:

Selection,Mutation,CrossOver, and FitnessEvaluation
19 Transfer results from GPU to host using CUDA streams
20 Copy back the results to Ignite cache
21 Send task completion signal to master
22 end

Algorithm 2 presents the worker’s code, which is the same for all workers. As can
be seen, first, workers wait for a job from the master. As soon as they receive a job
(line 1), they will receive its configuration, and the CUDA source code (lines 2 and
3). Then, workers adjust the settings for the GPU code (line 4), allocate the required
memory (line 5), and create demanded streams (lines 5 and 6). Line 9 checks
whether there is a Compute Task, and in lines 10 to 14, if the termination signal
is not received, they start the main processing phases. They pick the required data
from memory, convert it to Byte Array, copy the data on the GPU using streams, and
launch the GPU kernel. Lines 19 and 20 are related to returning the results, which
are the chromosomes that genetic operations are done on them, and push them into
the cache. It should be noted that the master node is also a worker, and it is not idle
during workers computation. It also waits for a job and performs the worker code.

To summarize this section, first, a naïve implementation of Ignite-GPU was
developed in which each kernel was running separately on the GPU. Next, the ker-
nels were integrated into one GPU kernel. Then, CUDA streams were used, and
finally, some other optimizations were applied. The next section compares the per-
formance of Ignite and the fully optimized version of Ignite-GPU.

Author's personal copy

 A. H. Sojoodi et al.

1 3

4.4 Performance analysis

In this section, the performance of the provided platform is compared to the stand-
ard version of Ignite on one and four nodes. Ignite-GPU, in this section, is the fully
optimized implementation of our platform.

Initially, we run our experiments on a single node that the results are shown in
Fig. 11a. As represented, speedup improves with the increase in the size of data
(population size), and the speedup for 1 K, 10 K, 100 K, and 1M population sizes
are about 4X, 49X, 1177X, and 12391X, respectively. Although Ignite-GPU pro-
ceeds for populations larger than 1M, Ignite does not scale for large population sizes
in a reasonable time, and it takes too much time to progress, so we cannot present its
results for very large inputs.

In another setup, the same experiment has been done on a cluster with four nodes,
and the results are shown in Fig. 11b. As can be observed, the speedup for 1 K,
10 K, 100 K, and 1 M populations reaches about 1.7X, 46X, 1110X, and 10698X,
respectively. Similarly, Ignite does not progress for populations larger than 1M.

As described, the speedup on the cluster is slightly less than the speedup on a
single node, which is due to the overheads of data conversion operations. In Ignite-
GPU’s cluster, each node should perform a data conversion operation before placing
the data into the cache before forwarding it to the master, and before transmitting
data on the GPU. However, as shown in Fig. 12, for larger populations, the perfor-
mance of Ignite-GPU improves while running on the cluster. This line graph com-
pares Ignite-GPU’s performance on single and multi-node with different population
sizes. Although for 1 K, 10 K, and 100 K, running on the cluster is not advanta-
geous, for larger than 100 K, the performance of the 4-node cluster is higher than a
single node. The reason is that larger populations require more memory space and
computation, so running on the cluster with more computational resources would
be a better choice. All in all, based on the size of the input of the problem, it can be
decided by the user whether to run on a single node or the cluster.

5 Conclusion

In this paper, we explored the use of GPUs as coprocessors in one of the distributed
in-memory computing platforms—Apache Ignite. We tried to utilize the GPU’s pro-
cessing resources to gain more performance.

On the one hand, utilizing GPUs in Apache Ignite might be very useful, and by
responding correctly to challenges ahead and using appropriate optimization tech-
niques according to the application, a remarkable performance improvement can be
expected.

On the other hand, there are some considerations that should be taken into
account. First of all, utilizing GPUs in every context adds some costs, such as buy-
ing and maintenance of hardware. Second, writing code on the proposed platform
requires knowledge about GPU and its programming model (CUDA), and also
needs more programming effort. Besides, the presented work focuses on the Genetic

Author's personal copy

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

Algorithm and provides the software infrastructure to run it on the GPU. Hence,
running other algorithms on this platform requires much more programming effort.

To summarize, in this work, our goal is to add GPU-support to Ignite to accel-
erate the execution of time-consuming programs dealing with large volumes of

1

10

100

1000

10000

100000

1000000

10000000

100000000

1E+09

1K 10K 100K 1M 5M 10M

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Population Size
Ignite Ignite-GPU

(a) On a single node.

1

10

100

1000

10000

100000

1000000

10000000

100000000

1K 10K 100K 1M 5M 10M

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Population Size
Ignite Ignite-GPU

(b) On the 4-node cluster.

Fig. 11 Performance of Ignite and Ignite-GPU (streams: 8, block size: 32)

Author's personal copy

 A. H. Sojoodi et al.

1 3

data. We have investigated all the challenges facing the integration of in-memory
platforms with GPUs and provided several solutions according to the under-study
problem. Then, we applied the proposed solutions to Ignite and introduced Ignite-
GPU as a GPU-enabled distributed in-memory platform. Ignite-GPU showed about
12391X speedup on the Genetic Algorithm as a workload.

Future work we are interested in performing to improve our framework include
the following:

∙ Ignite-GPU currently supports Genetic Algorithms, and we are studying larger
and more time-consuming problems with various data types to implement on the
provided platform in order to demonstrate its versatility.

∙ In addition to Genetic Algorithms, we plan to run other categories of Ignite
applications on the GPU—such as streaming applications, employing the tech-
niques presented in this paper.

∙ Being able to use the GPU as a co-processor in Ignite, we plan to divide the
workload between CPU and GPU and utilize both of them simultaneously.

References

 1. Apache Hadoop. http://hadoo p.apach e.org/. Accessed 01 Nov 2019
 2. Dean Jeffrey, Ghemawat Sanjay (2008) Mapreduce: simplified data processing on large clusters.

Commun ACM 51(1):107–113
 3. Konstantin S, Hairong K, Sanjay R, Robert C (2010) The hadoop distributed file system. In:

2010 IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), IEEE, pp
1–10

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

1K 10K 100K 1M 5M 10M

Ex
ec

ut
io

n
Ti

m
e

(m
s)

Population Size

Ignite-GPU (Single-Node) Ignite-GPU (4-Node)

Fig. 12 Performance of Ignite-GPU on a single node and 4-node (streams: 8, block size: 32)

Author's personal copy

http://hadoop.apache.org/

1 3

Ignite-GPU: a GPU-enabled in-memory computing architecture…

 4. Vasiliki K, Vladimir V (2013) Mapreduce: limitations, optimizations and open issues. In: 2013
12th IEEE International Conference on Trust, Security and Privacy in Computing and Communi-
cations, IEEE, pp 1031–1038

 5. Apache Spark TM-unified analytics engine for big data. http://spark .apach e.org/. Accessed 01 Nov
2019

 6. Stateful Computations over Data Streams, Apache Flink. http://flink .apach e.org/. Accessed 01
Nov 2019

 7. Xiangrui M, Joseph B, Burak Y, Evan S, Shivaram V, Davies L, Jeremy F, Tsai DB, Manish A,
Sean O et al (2016) Mllib: machine learning in apache spark. J Mach Learn Res 17(1):1235–1241

 8. Open Source In-Memory Computing Platform: Apache IgniteTM . http://ignit e.apach e.org/.
Accessed 04 Jun 2020

 9. Eric M, Roger B (2017) Introduction to GPUs for data analytics. O’Reilly, 1005 Gravenstein
Highway North, Sebastopol, CA

 10. Apache Storm. http://storm .apach e.org/. Accessed 01 Nov 2019
 11. Dieudonne M, David T (2016) Exploring GPU acceleration of apache spark. In: 2016 IEEE

International Conference on Cloud Engineering (IC2E), IEEE, pp 222–223
 12. Peilong L, Yan L, Ning Z, Yu C (2015) Heterospark: a heterogeneous CPU/GPU spark platform

for machine learning algorithms. In: 2015 IEEE International Conference on Networking, Archi-
tecture and Storage (NAS), IEEE, pp 347–348

 13. Mazhar Rathore M, Hojae S, Awais A, Anand P, Gwanggil J (2018) Real-time big data stream
processing using GPU with spark over hadoop ecosystem. Int J Parallel Program 46(3):630–646

 14. Ryo A, Masao O, Fumihiko I, Kenichi H (2018) Transparent avoidance of redundant data trans-
fer on GPU-enabled apache spark. In: Proceedings of the 11th Workshop on General Purpose
GPUs, ACM, pp 22–30

 15. IBMSparkGPU, GitHub. http://githu b.com/IBMSp arkGP U/. Accessed 01 Nov 2019
 16. Yuan Y, Fathi SM, Yin H, Kaibo W, Rubao L, Xiaodong Z (2016) Spark-GPU: an accelerated in-

memory data processing engine on clusters. In: 2016 IEEE International Conference on Big Data
(Big Data), IEEE, pp 273–283

 17. Matei Z, Mosharaf C, Tathagata D, Ankur D, Justin M, Murphy M, Franklin Michael J, Scott
S, Ion S (2012) Resilient distributed datasets: a fault-tolerant abstraction for in-memory cluster
computing. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation, USENIX Association, p 2

 18. Zhenhua C, Jielong X, Jian T, Kevin K, Charles K (2015) G-storm: GPU-enabled high-through-
put online data processing in storm. In: 2015 IEEE International Conference on Big Data (Big
Data), IEEE, pp 307–312

 19. Chen C, Li K, Ouyang A, Zeng Z, Li K (2018) Gflink: an in-memory computing architecture on
heterogeneous CPU-GPU clusters for big data. IEEE Trans Parallel Distrib Syst 29(6):1275–1288

 20. Lunga D, Gerrand J, Yang L, Layton C, Stewart R (2020) Apache spark accelerated deep learn-
ing inference for large scale satellite image analytics. IEEE J Sel Top Appl Earth Observ Remote
Sens 13:271–283

 21. Carol M (2020) Accelerating apache spark 3.X leveraging NVIDIA GPUs to power the next era
of analytics and AI, vol 01. NVIDIA Corporation, 2788 San Tomas Expressway, Santa Clara

 22. CUDA Zone|NVIDIA Developer. https ://devel oper.nvidi a.com/cuda-zone. Accessed 06 Jun 2020
 23. ACID Transactions. https ://ignit e.apach e.org/featu res/trans actio ns/. Accessed 01 Nov 2019
 24. Apache Ignite Documentation. https ://apach eigni te.readm e.io/docs. Accessed 06 Jun 2020
 25. Spring Boot With Apache Ignite: Fail-Fast Distributed MapReduce Closures. https ://dzone .com/

artic les/sprin g-boot-with-apach e-ignit e-fail-fast-distr ibut. Accessed 06 Jun 2020
 26. OpenCL|NVIDIA Developer. https ://devel oper.nvidi a.com/openc l. Accessed 06 Jun 2020
 27. NVCC: CUDA Toolkit Documentation. https ://docs.nvidi a.com/cuda/cuda-compi ler-drive r-nvcc/

index .html. Accessed 06 Jun 2020
 28. PTX ISA: CUDA Toolkit Documentation. https ://docs.nvidi a.com/cuda/paral lel-threa d-execu

tion/index .html. Accessed 06 Jun 2020
 29. Yonghong Y, Max G, Vivek S (2009) Jcuda: a programmer-friendly interface for accelerat-

ing java programs with CUDA. In: European Conference on Parallel Processing, Springer, pp
887–899

 30. Craig B (1999) A reasonable c ++ wrappered java native interface

Author's personal copy

http://spark.apache.org/
http://flink.apache.org/
http://ignite.apache.org/
http://storm.apache.org/
http://github.com/IBMSparkGPU/
https://developer.nvidia.com/cuda-zone
https://ignite.apache.org/features/transactions/
https://apacheignite.readme.io/docs
https://dzone.com/articles/spring-boot-with-apache-ignite-fail-fast-distribut
https://dzone.com/articles/spring-boot-with-apache-ignite-fail-fast-distribut
https://developer.nvidia.com/opencl
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

 A. H. Sojoodi et al.

1 3

 31. Jie Z, Juanjuan L, Erikson H, Hai J, Kuan-Ching J (2014) Gpu-in-hadoop: enabling mapreduce
across distributed heterogeneous platforms. In: 2014 IEEE/ACIS 13th International Conference
on Computer and Information Science (ICIS), IEEE, pp 321–326

 32. Van Werkhoven B, Maassen J, Seinstra Frank J, Bal Henri E (2014) Performance models for
CPU-GPU data transfers. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing

 33. JCuda Documentation. http://www.jcuda .org/docum entat ion/Docum entat ion.html. Accessed 29 Jun
2020

 34. Shah R, Narayanan PJ, Kothapalli K(2010) Gpu-accelerated genetic algorithms. cvit.iiit.ac.in

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

Author's personal copy

http://www.jcuda.org/documentation/Documentation.html

	Ignite-GPU: a GPU-enabled in-memory computing architecture on clusters
	Abstract
	1 Introduction
	2 Background
	2.1 Apache Ignite
	2.2 GPU, CUDA, and JCUDA

	3 Design and architecture
	3.1 Design goals
	3.2 Challenges
	3.3 Ignite-GPU overview
	3.4 Optimizations

	4 Experimental results
	4.1 Experimental environment
	4.2 Workloads
	4.2.1 Genetic algorithm

	4.3 Our methodology
	4.4 Performance analysis

	5 Conclusion
	References

