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Abstract
During recent years, big data explosion and the increase in main memory capacity, 
on the one hand, and the need for faster data processing, on the other hand, have 
caused the development of various in-memory processing tools to manage and 
analyze data. Engaging the speed of the main memory and advantaging data local-
ity, these tools can process a large amount of data with high performance. Apache 
Ignite, as a distributed in-memory platform, can process massive volumes of data in 
parallel. Currently, this platform is CPU-based and does not utilize the GPU’s pro-
cessing resources. To address this concern, we introduce Ignite-GPU that uses the 
GPU’s massively parallel processing power. Ignite-GPU handles a number of chal-
lenges in integrating GPUs into Ignite and utilizes the GPU’s available resources. 
We have also identified and eliminated time-consuming overheads and used various 
GPU-specific optimization techniques to improve overall performance. Eventually, 
we have evaluated Ignite-GPU with the Genetic Algorithm, as a representative of 
data and compute-intensive algorithms, and gained more than thousands of times 
speedup in comparison with its CPU version.

Keywords Apache Ignite · Parallel processing · GPU · In-memory computing

1 Introduction

With the advancement of technology in today’s world, a vast amount of data is being 
generated at high velocities from various sources, containing several data types. 
These data are not valuable by themselves until they get analyzed and become useful 
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and tangible information. Since new applications usually deal with large amounts 
of data and require a lot of processing power, it is not possible to process them on a 
single machine. Therefore, we need suitable tools that can perform these computa-
tions in a distributed manner so that they can provide more storage and processing 
power.

For this purpose, Apache Hadoop [1], which is an open-source version of MapRe-
duce [2], was introduced. This platform could scale-out on any number of nodes, 
and works in a distributed manner. Moreover, Hadoop has its distributed disk-based 
file system, called the Hadoop File System (HDFS) [3], for managing and storing 
data on the clusters.

Considering the advent of newer applications, faster data production, and the 
demands to process these data, Hadoop’s limitations became more prominent [4]. 
Some of the restrictions are as follows: supporting only batch processing, offering no 
support for real-time data processing, low-performance data processing due to the 
disk I/O bottleneck, and lacking support of some applications like machine learning. 
To overcome the issues mentioned, more advanced tools have been developed.

The main barrier, which limits Hadoop’s performance is its disk-based distrib-
uted file system. To eliminate this barrier and enhance performance, in-memory 
platforms have been developed that store and process data on the main memory 
across the cluster. These platforms eliminated the disk IO bottleneck in Hadoop 
and revolutionized big data processing. Apache Spark [5] and Apache Flink [6] are 
two well-known in-memory platforms that were introduced to overcome Hadoop’s 
restrictions. They can analyze streaming data in real-time and support SQL. Moreo-
ver, Spark has provided a library to facilitate distributed machine learning [7].

Although these platforms have brought many new facilities, they still possess 
some limitations. For example, Spark does not have a file management system itself 
and relies on other platforms. It also does not support many algorithms; its stream 
processing is not entirely real-time (it is micro-batch), and its latency is high in some 
situations. In addition, Flink is more known as a stream processing platform rather 
than a general-purpose processing engine.

Apache Ignite [8], as a recently released platform, is another distributed in-mem-
ory database for caching and processing big data. This platform provides some new 
features and has tried to overcome previous platforms’ limitations. Ignite is suitable 
for data analytics, transactional, and streaming jobs. Moreover, it supports distrib-
uted machine learning and unlike Spark, it has its own file system to manage data on 
disk and main memory.

After the development of in-memory architecture and increasing RAM capacity, 
the only factor that circumscribes data analytics’ performance is the processing unit. 
In other words, the performance bottleneck has shifted from disk I/O to computation 
[9]. Accordingly, performance can increase on in-memory platforms by using appro-
priate and faster processors.

GPUs have been introduced as an appropriate choice for data analytics and high-
performance computing. They are massively parallel processors with high process-
ing power and high memory bandwidth. GPUs can process data multiple times 
faster than CPUs. A large number of simple, small, and efficient cores enable GPUs 
to perform repetitive and similar operations rapidly, with high throughput. Due to 
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their architecture, GPUs are the proper choice for running machine learning, deep 
learning, and real-time data analytics applications [9].

Given that in-memory platforms are currently CPU-based and use CPU to per-
form their computations, adding GPU-support could be an excellent approach to 
remove their computation bottleneck. By doing so, users on these platforms will not 
only benefit from the high speed of processing in memory, but they also will take 
advantage of the processing power of GPUs. Previous studies have shown that using 
GPU’s processing power in in-memory platforms such as Spark, Flink, and Storm 
[10] has considerably accelerated their execution.

Manzi et al. [11] examined the feasibility and benefits of offloading some of the 
spark core operations to the GPU. They ported several iterative and non-iterative 
applications to the GPU, whose results showed about 17X Speedup for the K-Means 
clustering algorithm. For other algorithms, like WordCount and RadixSort, there 
was a marginal speedup due to data conversion bottleneck, which is the task of con-
verting data into GPU-friendly format.

HeteroSpark [12] was another GPU-accelerated architecture that used GPU’s pro-
cessing power for data and compute-intensive operations, which allowed the appli-
cations to use the GPU beside the CPU. This platform showed better performance 
and energy efficiency versus Spark. HeteroSpark resulted in about 18X Speedup for 
machine learning workloads.

Rathore et al. [13] combined Hadoop MapReduce and Spark to provide an effi-
cient and high-performance platform suitable for streaming processes. They used the 
GPU as a co-processor for real-time big data processes, which resulted in higher 
performance than its CPU implementation.

Asai et al. [14] provided an extension for IBMSparkGPU [15], which is a Spark-
based framework that executes Spark tasks on the GPU. They tried reducing the 
number of data exchanges between the CPU and the GPU by eliminating redundant 
data transfers. The result of their work on a machine learning application was about 
1.3X acceleration.

Spark-GPU [16] was a CPU–GPU hybrid platform that also tried to utilize the 
GPU in Spark. They examined various challenges of integrating Spark with the 
GPU, and provided some solutions. They introduced a novel type of RDD [17] 
called GPU-RDD that was suitable for use in the GPU’s native memory. Spark-GPU 
was able to accelerate machine learning algorithms about 16.13X and SQL queries 
4.3X compared to Spark.

G-Storm [18] was a parallel GPU-enabled system designed to process stream-
ing data, in which the GPU was used for its high throughput. The platform supports 
various data types and applications, and its overhead for data processing workloads 
is remarkably low. Their results showed that the platform achieved more than 7X 
throughput improvement on continuous query and 2.3X in the matrix multiplication 
application.

GFlink [19] is another distributed in-memory platform that utilizes GPU’s 
memory bandwidth as well as its computation resources. To enhance the perfor-
mance of this platform, they deployed various methods and introduced an efficient 
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communication mechanism between the JVM1 and the GPU. They implemented an 
adaptive locality-aware scheduling method that resulted in higher performance ver-
sus the CPU-based implementation of Flink.

The integration of in-memory platforms and GPUs has been utilized in other 
areas as well. Lunga et al. [20] used Spark and GPU processing power to process 
several thousand terabytes of satellite images. Using GPUs, their results showed 
an acceleration of about 400X in deep learning inference. Table 1 summarizes the 
related work.

Due to the importance of this issue, Nvidia is also officially adding GPU-support 
to Spark 3.0 for some data analytics, machine learning, and deep learning applica-
tions [21].

Apache Ignite, as a CPU-based platform, is not capable of utilizing the GPU 
yet. Adding this feature, it can benefit from the high processing power of the GPU 
to accelerate its computations. Thus, we have considered adding GPU-support to 
existing Apache Ignite implementation. For this purpose, we have designed Ignite-
GPU: a GPU-enabled in-memory computing architecture on clusters. The proposed 
platform enables Ignite to utilize GPUs to speed up applications that are data or 
compute-intensive.

In this paper, we have examined various ways of integrating GPUs with Ignite, 
and have introduced multiple techniques for better utilization of GPUs. We have 
chosen the Genetic Algorithm as a workload to examine the proposed techniques’ 
effects on performance. Experimental results show a considerable performance 
improvement of proposed work in the Genetic Algorithm, with the presence of 
GPUs.

Table 1  A summary of related work

Related work Base platform(s) Utilized processor(s) WorkLoad(s) Acceleration

Manzi et al. Apache Spark GPU K-means clustering
Word count
Radix sort

17X
–
–

HeteroSpark Apache Spark Hybrid CPU–GPU Logistic regression
K-means clustering

18X
16X

Rathore et al. Hadoop/Apache Spark Hybrid CPU–GPU Stream More than 6X
Asai et al. Apache Spark GPU Logistic regression 1.3X
Spark-GPU Apache Spark Hybrid CPU–GPU K-means clustering

Logistic regression
SQL queries

5.71X
16.13X
4.83X

G-storm Apache Storm GPU Continuous query
Matrix multiplication

7X
2.3X

GFlink Apache Flink GPU SpMV 5.1X
Lunga et al. Apache Spark GPU Deep learning inference 400X

1 Java Virtual Machine.
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This paper is the first attempt that utilizes GPU’s processing power in Apache 
Ignite. Also, some of the techniques and optimizations used in this paper have not 
been adopted in any of the related work, and the presented techniques may be appli-
cable to other platforms as well. It should be noted that it is not possible to compare 
the proposed work with the related work, because they are not open-source; in addi-
tion, none of them officially support the Genetic Algorithm.

Our main contributions are as follows: 

∙  We have examined the use of GPUs in Apache Ignite and identified challenges 
ahead.

∙  We have come up with innovative solutions for integrating Apache Ignite, or 
other distributed in-memory platforms, with GPUs.

∙  Based on Ignite, Ignite-GPU has been designed and implemented, which 
addresses all existing challenges and utilizes the GPU through Apache Ignite 
efficiently.

∙  Various APIs2 were provided for utilizing and easy use of GPUs on Ignite.
∙  Multiple optimization techniques have been applied to enhance the performance 

of Ignite-GPU.
∙  Finally, we have compared the performance of proposed work with Ignite and 

have evaluated the results of each of the optimizations.

The rest of the paper is organized as follows. Section 2 provides the necessary 
background to read the paper and summarizes the architecture of the GPU and 
Ignite. Section 3 describes Ignite-GPU, which first outlines the goals and challenges 
ahead, and ultimately describes the solutions and optimizations. Experimental 
results are presented in Sect. 4, and Sect. 5 is the conclusion and future work of the 
paper.

2  Background

In this section, we briefly describe the key concepts required to read this paper. To 
begin with, we discuss the Ignite’s execution model, then describe the GPU archi-
tecture and the CUDA3 [22] programming model.

2.1  Apache Ignite

Apache Ignite is a newly released open-source platform used for storing and pro-
cessing large amounts of data that can be distributed across the nodes in a clus-
ter. GridGain Systems open-sourced Ignite in late 2014, then it was accepted as an 
Apache Incubator program.

2 Application Program Interface.
3 Compute Unified Device Architecture.
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The Apache Ignite architecture is based on storing data in RAM—in-memory 
computing, which causes a dramatic increase in processing speed, compared to disk-
based processing engines. Ignite provides an easy-to-use interface for developers to 
process a vast amount of data in real-time. Data in Ignite are stored as key-value 
pairs on distributed caches, and each node of the cluster can have its own partition 
of the data. Furthermore, Ignite automatically rebalances the data while adding or 
removing a node from the cluster. All of these transactions in Ignite are ACID [23]. 
Not only can it be run in standalone mode, but it also has the ability to be deployed 
in the cloud, containerized, and provisioning environments.

As it is illustrated in Fig.  1, the main features of Ignite are Data Grid, Com-
pute Grid, Service Grid, SQL Grid, Bigdata Accelerator, Streaming Grid, Machine 
Learning, Third-party persistence store, and ORM support. All features are pro-
vided for application developers in a variety of APIs, enabling them to produce their 

Docker   AWS   Google   Mesos   YARN   Kubernetes

Na�ve Persistence (Flash, 
SSD, Intel 3D Xpoint)

Third-party persistence 
(HDFS, NoSQL, RDBMS)

IN-MEMORY STORAGE
(On-heap & Off-heap)

Key-value 
store Streaming BigData

Accelerator
ORM 

Support

Compute 
grid

Service 
grid SQL grid Machine 

Learning

JDBC    ODBC    .Net C++    PHP    Memcached

Fig. 1  Ignite main features. Source: Adapted from Ref. [24]
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Fig. 2  Ignite Compute Task procedure. Source: Adapted from Ref. [25]
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desired applications. It should be mentioned that all of these APIs are running on the 
CPU.

Figure 2 shows the procedure of a computing task in Ignite. When an application 
developer assigns a task to a node, the node acts as the master (in this figure, node 
1 is master), partitions the input data, and delivers the data alongside an executable 
task to each node through the network (Step 1 and 2). This executable job and its 
corresponding data are called a Compute Task in Ignite’s environment. Then, while 
each node completes its share of computation, the results are returned to the master 
(Step 3).

It should be noted that the data are distributed among nodes through Ignite’s in-
memory caches. Application developers can set these caches to be shared among 
all (or some) nodes or be exclusive for each node, based on their application and its 
requirements. Ignite manages the accesses to these caches automatically, and users 
are not involved in these issues.

2.2  GPU, CUDA, and JCUDA

GPUs are used as powerful co-processors alongside CPUs and are utilized in gen-
eral-purpose computing due to their architecture, programming model, high perfor-
mance, and energy efficiency. One of the applications of GPUs is high-performance 
data analytics [9] that they are used to address the insatiable desire for faster data 
processing and computation. Because of their massively parallel processing capa-
bilities, GPUs are able to process data with much more throughput than the CPU, 
making them a good candidate for compute-intensive operations and iterative 

Mul�-processor 1

Cores

Mul�-processor N

Cores

. . .
Device Memory Main Memory

CPU

GPU

Fig. 3  The GPU architecture model
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algorithms. Due to their high processing speed, the GPUs are also being used for 
real-time processing [9, 18].

As Fig. 3 demonstrates the GPU architecture, they are consist of a large number 
of cores grouped as multi-processors. Based on a scheduling policy, all of the cores 
of a multi-processor execute a similar operation on different data. This architecture 
is called Single Instruction Multiple Data (SIMD). All of these multi-processors 
fetch their corresponding data from the device memory, directly connected to the 
main memory. Not only the device memory has very high bandwidth, but it also 
exhibits low latency.

Threads in the GPU programming model are categorized as thread grids, each 
of which contains multiple thread blocks (thread groups). While each device is the 
unit of resource allocation to thread grids, multi-processors are the unit of resource 
allocation to thread blocks. These thread blocks contain smaller units, named warps, 
that are dynamically scheduled on multi-processors by warp schedulers. Processing 
resources like registers and shared memory are shared between threads in a thread 
block. It should be remarked that threads reside on the GPU (named device threads) 
and on the CPU (named host threads) are different. Device threads are more light-
weight, and their creation and context-switch costs are considerably lower than those 
of the host threads.

GPU occupancy is one of the most critical factors, having a significant effect on 
GPU’s performance, defines as the ratio of active scheduling units to the maximum 
number of available ones. Depending on the GPU’s compute capability, its active 
scheduling units should be maximized, and its processing power should be fully uti-
lized to gain more remarkable performances.

GPU programs are typically written in CUDA or OpenCL [26]. The NVCC4 [27] 
translates the CUDA code into two parts: one for running on the CPU, and one for 
running on the GPU. The kernel is referred to that part of the code that runs on the 
GPU. Then, the NVCC compiler converts the GPU part to PTX5 [28]—which is a 
pseudo-assembly language—and eventually, the graphics driver turns it into binary 
code, which runs on the GPU cores.

To exploit the GPUs’ resources like CUDA kernels in Java applications, we need 
a communication bridge that can establish a connection between CUDA and Java. 
Two of the most famous options are JCUDA [29] and JNI6 [30]. Although JCUDA 
has a higher development complexity, it has a better performance than JNI [31]. 
Containing a binding to CUDA, JCUDA enables us to load and execute CUDA ker-
nels in Java programs. In addition, it provides facilities for allocating memory on the 
host and the device and transferring data between them.

Typically, to run a task on the GPU, one needs doing the following three steps in 
consequence: 

1. Copying the kernel required data from the host to the device memory.

4 Nvidia CUDA Compiler.
5 Parallel Thread Execution.
6 Java Native Interface.
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2. Launching the kernel.
3. Returning the result data from the device to the host memory.

Transferring data back and forth between the host and the device memory is costly 
and can result in performance degradation. Gregg et al. [32] showed that the required 
time to perform a particular task on the GPU, considering the data transfer time can 
be 2 to 50X greater than there is no data transfer. Hence, one should try to eliminate 
unnecessary communications at design time, to gain more performance.

3  Design and architecture

Firstly, this section discusses the design goals and challenges ahead in the integra-
tion of GPUs with Apache Ignite. Then, the design that addresses the problems 
comes afterward.

3.1  Design goals

In this design, we have tried to pursue the following goals: 

∙  Feasibility: One of our most significant goals is to show that Apache Ignite can 
be integrated with GPUs successfully. Therefore, Ignite can use GPUs alongside 
CPUs, as co-processors, to accelerate its processes.

∙  Performance: One of our other primary goals is to achieve higher performance 
compared to Ignite’s CPU implementation to accelerate the processing of user 
applications.

∙  Flexibility: This platform should allow developers to implement their custom 
applications on the GPU, and adjust the parameters of their applications, accord-
ing to their requirements.

∙  Ease of Use: The provided platform needs to be easy to use so that the applica-
tion developers can use it effortlessly. For this purpose, we need to implement 
suitable APIs to provide the desired functionalities in working with GPUs.

∙  Portability: Application developers should be able to deploy this platform on any 
machine, equipped with a General-purpose GPU (GPGPU), without any particu-
lar changes.

∙  Scalability: Because Ignite is a distributed platform, and can scale on thousands 
of nodes, its GPU version must also be able to distribute on any number of 
nodes.

3.2  Challenges

Ignite applications—which are primarily data analytics, exhibit iterative behavior, 
and are suitable for running on GPUs. However, there are challenging obstacles in 
integrating GPUs into Ignite. Addressing these challenges efficiently will result in 
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dramatic performance improvement and better utilization of existing processing 
resources. We explore these challenges in the following. 

∙   Data conversion overhead: Data in Ignite are stored as JVM objects, which are 
unsupported by GPUs. Before sending it to the GPU, the data should be con-
verted to a GPU-friendly format. This conversion consumes much time, which 
may even cause speed-down [2].

∙  Data type support: Supporting all available data types on GPUs requires exces-
sive programming efforts, including design, development, and test. In fact, for 
each data type, a new GPU kernel and data transfers are required.

∙  Data transfer: Frequent data transfers between the host and the device are time-
consuming and cause performance degradation. To cope with this challenge, 
we should omit redundant data transfers and keep the working set on the device 
memory as long as possible. Minimizing these unnecessary data exchanges, dra-
matically increases performance [14].

∙  Insufficient device memory: According to user applications, the data volume may 
be larger than the size of the device memory, which leads to program crashes or 
data losses. Therefore, because of the limited capacity of the device memory, a 
couple of dynamic pre-checking tests should be performed.

∙  Garbage collection: In some iterative algorithms, a particular kernel might be 
launched repeatedly with various input data. These recurring launches of the 
kernel associated with frequent memory allocations and deallocations for the 
data transfers. Our studies have shown that these allocations and deallocations 
are also time-consuming.

∙  Utilizing the GPU: GPUs possess high processing power, and they would be 
advantageous if only their resources are adequately utilized. It is essential for the 
platform to use the maximum available processing potential of GPUs.

∙  Memory coalescing: Due to the GPU architecture, one of the key factors affect-
ing performance is how threads access the memory. When this access is coa-
lesced—consecutive GPU threads access consecutive memory units (sequential 
access), performance will be better.

3.3  Ignite‑GPU overview

Ignite-GPU is an in-memory architecture, enabled to operate in a heterogeneous 
cluster of CPU–GPU. This framework delivers all benefits of standard Ignite; more-
over, it can handle some Ignite applications that do not respond in a reasonable time. 
In our design, we have tried to overcome all the mentioned challenges and achieve 
the desired goals. On this platform, GPUs have been used to execute data-intensive 
and compute-intensive applications. So, Ignite application developers can utilize the 
GPU alongside the CPU. It should be noted that the provided platform is designed 
with the assumption that there is only one GPU on each node.

Ignite includes multiple possible execution scenarios. One of which is as fol-
lows: first, the master node delivers required initial data alongside a process to the 
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workers. Next, each worker receives its data, processes it, and returns results to the 
master. Ultimately, every node waits for the other nodes to synchronize. If the appli-
cation is an iterative one, this procedure is repeated. Similarly, Ignite-GPU follows 
this proceeding with some differences: When the data reach the workers, they trans-
mit the data to the GPU instead of processing it on the CPU. On each node, the GPU 
performs the corresponding processing and pushes the results data to the Ignite 
associated caches to be sent to the master for synchronization.

Since Ignite is developed with Java, to fulfill the need for establishing a connec-
tion between Java and CUDA, we used JCUDA. JCUDA is a programming inter-
face that can be used in Java programs to invoke CUDA functions, including user-
defined kernels. Using this interface, programmers can directly call CUDA kernels 
and transfer data between host and device in their Java codes without being worried 
about the technical details of bridging between Java runtime and CUDA runtime 
[33]. In the following, we describe the solutions proposed for each challenge.

The first problem was the Data Conversion Overhead, which was the cost of con-
verting JVM objects to a GPU-friendly format. In the cases that we need to access 
the data itself on the GPU, we should pay off the cost of converting the objects to 
GPU-friendly data types. In this situation, first, each node converts the received 
data, before forwarding it to the GPU, into the array format—or any appropriate 
form. Then, the required space should be allocated on the device (which JCUDA 
provides this possibility). Finally, the data should be sent to the GPU for launching 
the kernel.

Apart from converting data to the appropriate format, we need to match the ker-
nel input data type to the data sent from the host. One naïve solution is to implement 
a separate kernel for each data type which requires a lot of programming efforts and 
reduces code reusability. To overcome this problem, called Data Type Support, we 
proposed a data transfer mechanism. The data, regardless of its type, on the host are 
converted into a byte array and sent to the GPU. On the device side, we have imple-
mented a union called data_unit that extracts the data with the desired type from 
this byte array. This data can represent the defined types of data_unit union like 
character, string, integer, long, and double. As demonstrated in the following, this 
union is defined in the kernels file and supports the mentioned types of data.

typedef union {
char c;
int i;
double d;
long l;
char s [SIZE];

} data_unit;

By retrieving the desired data type from the union, the compiler does data con-
version automatically and fetches that type of data. Using this mechanism, there is 
no need to implement a new kernel to support each data type, and regardless of the 
data type of the application, we can support it with the same kernel.
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The subsequent challenge ahead is transferring the data between the host and the 
device, which Ignite-GPU handles it efficiently. Without the involvement of appli-
cation developers, Ignite-GPU converts the data to the appropriate format, sends 
it to the device, and returns the results to the host after kernel execution. Efficient 
data transfer and reducing unnecessary data copies can have a significant impact on 
the performance; therefore, we have tried to omit redundant copies and keep the 
in-use data on the device memory as long as possible. We have employed a tech-
nique named bottom-up integration to eliminate redundant data transfers—that will 
be described further in the current section.

The next issue is insufficient device memory. In this platform, each node com-
putes the size of the data before sending it to the GPU. If the data size is bigger than 
the device memory capacity, gives a warning to the user and asks whether to divide 
data into smaller chunks. If the user accepts, the data will be broken down into a fit-
ting power of 2, prior to sending it to the GPU.

Due to the inherent characteristic of Ignite applications—that are mostly iterative, 
they may cause Garbage Collection overheads for their kernel calls. Therefore, we 
have managed device and host memory allocations/deallocations within the whole 
program. In Ignite-GPU, each cluster node has the duty of allocation and dealloca-
tion for its data on the host and device. Considering that most of Ignite applications 
have iterative behavior, a couple of allocation–deallocation is needed for each kernel 
call in every iteration. In Ignite-GPU, all of the required data spaces are allocated 
at the beginning of the program. They are reused during the iterations, and all of 
them are released before the program’s termination. It reduces the overheads of fre-
quent memory operations for kernel calls in iterative algorithms and improves the 
performance.

One of the other important challenges is Utilizing the GPU. Ignite-GPU provides 
this flexibility to application developers to adjust the program’s parameters based 
on their needs and their GPU architecture. Application developers can set all of the 
GPU associated parameters like blockSize. By setting these parameters due to the 
GPU hardware specifications, the GPU resources can be more utilized.

The final challenge is Memory Coalescing, which is related to how data is 
accessed on the GPU. In this platform, all memory accesses are coalesced, which 
means all GPU threads have serial access to the memory, and no memory access 
conflict occurs.

Considering the requirements of using the GPU, we have provided various APIs, 
including initializing the driver, creating context, and module loading (which loads 
the PTX file) on each cluster node. Also, there are specific APIs for launching a ker-
nel and transferring data from host to device and vice versa.

To provide more flexibility for application developers, they can specify their 
desired existing kernel name to access it through their program. Moreover, they can 
personalize the existing kernels or implement new ones in the Kernels.cu file and 
call them.

To port an application to the GPU, initially, it is necessary to analyze the applica-
tion carefully and identify its time-consuming parts. To that end, in the first phase, 
we profile the application, identify its time-consuming modules, and try running 
those modules separately on the GPU. Calling each kernel needs data transfers 
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between the host and device, and takes much time and leads to performance degra-
dation. In the second phase, we tried to integrate these separate kernels and maintain 
the desired data on the device, instead of consecutive copies between the host and 
the device. By implementing this feature, all the separated kernels are performed 
seamlessly on the GPU, and the output of every kernel will be the input of the next 
one. Consequently, the data are once copied onto the device and once it is copied 
back to host.

Figure 4 demonstrates two execution timelines and their integration procedure. 
As can be seen, there are two kernels on the left side that each of which needs two 
data transfers (One for the host to device and one for vice versa). The data will not 
remain on the device between two consecutive kernel executions, and it causes two 
redundant data transfers between them. After execution of the first kernel, the data 
are copied to the host and then copied back to the device memory to run the second 
kernel. In contrast, on the right timeline, two redundant data transfers are omitted, 
and the data remain on the GPU between two kernel executions. The first kernel 
passes its data directly to the second kernel, and both kernels are executing in suc-
cession. By doing so, many redundant data transfers are omitted which causes a 
remarkable performance improvement.

Similar to Apache Ignite, Ignite-GPU is scalable and can operate on any num-
ber of nodes on a cluster. In this platform, each node is responsible for initializing 
and managing its GPU. At the beginning of the program, the master node broad-
casts Kernels.cu file to all nodes using IGFS (Ignite File System). This will make the 
application developer needless to copy the kernels file on each node manually. Even, 
by modifying the kernels file in the master, all nodes will have the same kernels. 
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After receiving the file from the master, each node generates a PTX file based on 
its CUDA runtime version to run it on its device(s). If the CUDA versions or GPUs 
models vary in other nodes, this method will be more reliable, ensuring there is no 
problem in execution. Besides, the generated PTX will be optimal for running on the 
underlying hardware.

3.4  Optimizations

We have implemented various techniques to improve performance and measured the 
impact of each of these methods, which will be described in the following. 

∙  Using CUDA Streams: Due to dealing with large amounts of data in this plat-
form, copying data between host and device is extremely time-consuming, 
and GPU cores will be idle during this copy operation. To address this prob-
lem, we use CUDA streams, which is a technique to launch multiple operations 
asynchronously on GPU. In this way, data-transfer and computation phases are 
overlapped. Commonly used for large data volumes, this method results in more 
efficient use of the GPU and increases performance. For more optimization, we 
have only created streams once at the first iteration of the program, and in the 
next kernel calls, we use the previous streams. Memory is pinned here to prevent 
the Operating System from swapping out the memory pages as a part of the Vir-
tual Memory management system. Ignite-GPU handles the creation and manage-
ment of the streams automatically. Also, we have provided this flexibility for the 
application developers to use the streams optionally. By setting a Boolean flag 
in the configurations of the program, they can specify whether they want to use 
streams or not, and they can also determine the number of streams. The number 
of streams can be set according to the data size and problem type.

∙  Using Global/Shared Memory: Global memory is available for all GPU threads, 
but shared memory is only shared between the threads inside a thread block. 
Shared memory is commonly used for applications that have more data reuse. 
It has a smaller size and faster access rate than the global memory. We allow 
application developers to use shared or global memory on demand by setting its 
corresponding configurations.

∙  Using Constant Memory: Constant memory is an excellent candidate to be used 
in the applications that we need to store static and constant data on the GPU, 
and frequently access it. This memory is read-only by the GPU threads and has 
a small size. Application developers can utilize constant memory in Ignite-GPU 
based on their application’s requirements to gain more performance.

∙  Copying Data indexes: Ignite stores the data in the key-value format in its 
cache. Depending on the application’s type, in some cases, we can copy the data 
indexes to the GPU instead of transmitting data itself. While each of the data is 
mapped to a unique key in the cache, there is chance of working on data indexes 
or reproducing the data from its indexes on the GPU side. Not only does it cause 
a substantial reduction in the amount of the sent data to the GPU—resulting in 
faster data transfer, but it also makes the data independent of its type. That is, 
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regardless of the data type, we can perform our operation on the GPU, and the 
Data Conversion is somehow evaded.

4  Experimental results

In this section, Ignite-GPU’s performance is evaluated. We initially describe the 
experimental environment, then present the observed results.

Every experiment is performed ten times, and the reported results represent the 
average of these ten experiments. Besides, all the reported results are the average 
execution time of one generation of the Genetic Algorithm, which is equivalent to 
the execution time of an iteration of the algorithm.

4.1  Experimental environment

We performed our experiments on a cluster with 4 GPU-equipped nodes. Each 
node is a XenServer VM and has 16 dedicated CPU cores with 2.0 GHz Intel Xeon 
E5-2620 and 30 GB of memory. Moreover, each node has an NVIDIA GeForce 
GTX 680 GPU with 1536 CUDA cores and 1.12 GHz clock rate, which has 2 GB 
of memory with 3.0 GHz memory clock and 173 GB/s of memory bandwidth. The 
CUDA version is 8.0, and the installed operating system on all nodes is Ubuntu 
16.04. Our architecture is based on Apache Ignite 2.7.0.

4.2  Workloads

The Genetic Algorithm, which is officially supported by Ignite, can be considered 
as a good candidate to be evaluated in this platform and run on GPU through Ignite. 
The computational jobs in most Ignite applications are modeled as Compute Tasks 
and they are designed based on this concept. Similarly, Ignite’s Genetic Algorithm 
is based on this concept, so it can be a good representative of many other Ignite 
applications. Moreover, due to its iterative behavior, it is similar to other Ignit’s 
machine learning algorithms in this respect, so the provided solutions for this algo-
rithm would be applicable to other machine learning algorithms. On the other hand, 
the Genetic Algorithm is compute and data-intensive and its time complexity grows 
with the increase of population size that these types of applications are suitable to 
run on GPUs.

In the following, we first describe the Genetic Algorithm and then explain how 
this algorithm executes on Ignite-GPU.

4.2.1  Genetic algorithm

Genetic Algorithm represents a subset of Ignite machine learning APIs and is 
suited to find the optimal solution in large and complex datasets. This algorithm 
is deployed in many real-world applications like automotive design, computer 
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gaming, robotics, investments, traffic/shipment routing, etc. Genetic Algorithms 
consist of four main stages: selection, fitness calculation, crossover, and muta-
tion. This algorithm initially produces an initial population that is a large set of 
possible solutions (chromosomes)—and each chromosome is made up of genes. 
In each iteration, it selects a set of best solutions based on an evaluation crite-
rion and performs mutation and crossover operations on this subset to produce 
better-fitted chromosomes for the next generation. This procedure is iterated 
until it approaches the optimal solution [24]. The Genetic Algorithm here uses 
Roulette Wheel for the selection, as well as Single Point crossover and Swap 
mutation.

In Ignite, most of the computational operations are considered as a Compute 
Task and will be sent to the nodes to run. The initial population generated ran-
domly is placed in the population cache and partitioned between nodes. Gene 
Cache holds all possible genes and gives each node a copy. The overall scheme 
of this algorithm in a distributed environment on Ignite is shown in Fig. 5. As 
shown, Each node operates and performs Genetic operations on its partition of 
data and at the end of each iteration, returns its results to the master node.

The problem we focused on to solve by the Genetic Algorithm is a character 
matching problem that tries to reach the “HELLO WORLD” string from alpha-
bet letters. In this case, Gene Cache is filled with A to Z and Space charac-
ters, and the optimal solution is “HELLO WORLD” Besides, a fitness score is 
used to measure the optimality of each solution. During each iteration, the algo-
rithm evaluates newly generated chromosomes—each of which is a string with a 
length of eleven, by calculating their fitness. The Fitness criteria is the similarity 
of each chromosome to the “HELLO WORLD” string. In this problem, the chro-
mosome length is 11 and is equal to the length of the “HELLO WORLD” string.

F = F1 + F2
C = C1 + C2

M = M1 + M2

Ignite Compute Grid

F1 , C1 , M1

F2 , C2 , M2

F = Fitness Calcula�on
C = Crossover
M = Muta�on

Node 1

Node 2

Aggrega�on of Results

Fig. 5  Genetic Algorithm execution model in Ignite. Source: Adapted from Ref. [24]
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4.3  Our methodology

To implement the Genetic Algorithm on Ignite-GPU, in the initial implementation 
phase, we first analyze the algorithm. Profiling results demonstrate that the most 
time-consuming parts of the algorithm are the main functionalities of the Genetic 
Algorithm—selection, mutation, crossover, and fitness evaluation. Next, we try per-
forming each of these time-consuming functionalities independently on the GPU 
(i.e., four GPU kernels). To implement any program on the GPU, it is essential that 
one sends data in batch to the device memory. Ignite sends chromosomes one by 
one to all nodes for processing, so we have to transform it to batch-like data parti-
tioning. Making data partitioning policy appropriate to the GPU execution model 
reduces data partitioning overheads and the number of Ignite’s cache accesses, and 
also eliminates the overheads of creating a Compute Task for each chromosome.

Figure 6 demonstrates our naïve implementation of Ignite-GPU’s execution time 
versus Ignite. This initial implementation shows about 1.3X speedup for population 
size 1K, 16X for 10 K, 296X for 100K, and 2859X for 1 million in comparison with 
the standard version of Ignite. In other words, speedup increases with an increase in 
population size. For larger input data, our naïve implementation showed better per-
formance in comparison with another state-of-the-art CUDA implementation of the 
under-study problem that gained about 1500X speedup for 1 million chromosomes 
[34]. Furthermore, the current Ignite implementation of the Genetic Algorithm has 
a time complexity that grows too much for larger population sizes. As demonstrated, 
it does not progress with population sizes larger than 1M, so it is not reasonable for 
one to use Ignite’s implementation of such applications.

While performing the four operations of the Genetic Algorithm separately 
on GPU, the data are frequently transferred between host and device. The main 
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bottleneck that restricts gaining more performance is the overhead of these frequent 
data transfers. To resolve this problem, we integrate these four operations—selec-
tion, crossover, mutation, and fitness evaluation, using our bottom-up integration 
technique and implement all of them as one kernel. This technique eliminates seven 
data transfers between host and device. That is, the data are copied into the device 
memory and returned back to the host only once. Figure 7 illustrates the scheme of 
this integration procedure for the Genetic Algorithm, and Fig. 8 represents the effec-
tiveness of this integration. As can be seen in this figure, for all population sizes, the 
bottom-up kernels’ integration caused about 3X acceleration in comparison to the 
naïve implementation.

Each stored chromosome in Population Cache is considered as a JVM object, and 
we need to convert it to a suitable format and data type to be used in the GPU. For 
this purpose, each node copies its Population Cache’s data into an array in sequence, 
then passes the array to the GPU. The array can have the pre-determined data types 
of data_unit union.

The nature of the distributed Genetic Algorithm is such that each node must send 
its data to the master node at specific time intervals (at the end of each iteration) 
for synchronization. So, the master node receives the results of all nodes at the end 
of each iteration. These results include the chromosomes in which crossover and 
mutation operations are performed on them, and their fitness is calculated. Master 
sorts the results according to their fitness and merges them. If the algorithm does not 
reach the optimal solution, the subsequent iteration begins.

To run all Ignite-GPU instances with the same arbitrary configuration, we have 
created another shared Ignite cache, in which we broadcast all the required settings 
needed for utilizing the GPU, such as using streams and their number, using shared 
memory, and so on. Application developers can specify them at the beginning of the 
program. They can also modify the Evaluation device function, which is responsible 
for fitness assessment based on their type of problem, and write their fitness assess-
ment criterion. We have delivered the capability, which allows users to use shared 
memory based on their problem type. However, our results showed that using shared 
memory in the HELLO WORLD problem is unbeneficial.

Assigning fair work to the GPU threads can improve performance by better uti-
lization of GPU. Accordingly, we assign one chromosome to each thread to process 
and operate on it. By doing so, we eliminate the need for some syncthreads(), which 
is a performance bottleneck, and resolve the memory coalescing challenge.

One of the other optimizations applied to this application is the use of CUDA 
streams, which enables users to determine the number of streams based on the size 
of data. By using streams, performance improves about 1.8X. Naturally, the number 
of streams can vary slightly depending on the size of the input data and application 
type. In some situations, data are not divisible by the number of streams or block 
size. To overcome this problem, we add padding to the end of the last data parti-
tion. This padding contains a copy of the most valuable chromosomes that helps the 
Genetic Algorithm to converge in fewer iterations.

Figure 9a, b evaluates the effect of using CUDA streams on performance for dif-
ferent numbers of streams and population sizes. As illustrated, for small population 
sizes, using streams is not beneficial, and using one stream, which is equal to do 
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not using streams, shows a better performance. In other words, utilizing streams for 
smaller data sizes is unbeneficial because the creation, destruction, and division of 
data between streams cause some overhead. However, for large populations, per-
formance improves by using streams. As illustrated, the execution time by using 
four, eight, and sixteen streams is fewer than no-stream (one stream) mode for large 
population sizes. Moreover, utilizing sixteen streams shows more execution time 
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compared to eight and four streams due to the overhead. Thus, there should be a 
trade-off between the number of streams and the size of population, and it is on the 
user to choose the appropriate number of streams based on their application.

Finally, by applying other optimizations, such as using constant memory and 
removing garbage collection overheads of device/host pointers, the results show 
about 31% performance improvement for 10M population size over previous optimi-
zations. Figure 10 compares the cumulative performance of using constant memory, 
removing garbage collection overheads, utilizing 8 streams, and applying bottom-
up integration with the time there is garbage collection overheads and no constant 
memory. Although the performance improvement of using constant memory and 
removing garbage collection overheads is marginal, they indeed affect performance, 
and it is better to apply these optimizations.

On top of that, data in the Ignite’s cache are stored as key-value pairs and is dis-
tributed within the cluster. For example, in the HELLO WORLD problem, each 
character (gene) is stored as a couple of (long, object) pairs in the cache. A long 
key can be used to retrieve an object from the cache and to convert it to the desired 
data type. There are some cases that instead of dealing with the JVM objects on the 
GPU, we can operate only on its long indexes if there is a one-to-one relationship 
between key-value pairs. In these types of problems, keys can be used instead of 
the actual data to increase the data access rate. This also results in reducing the data 
size, which diminishes data transfer overhead and occupies less volume of device 
memory. Moreover, the kernel is independent of the data type, and there is no need 
to use data_unit union anymore.

Although this idea can be applied to the crossover, mutation, and selection 
phases of the Genetic Algorithm, it may not be applicable to other phases (e.g., 
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fitness evaluation) that need access to the actual data. In these situations, data can be 
retrieved from its key on the device, using a pre-constructed hash table on the GPU. 
This hash table has to be created at the start of the program on the device memory of 
each client; then, it can be used for retrieving data from their key.

Algorithm 1: Pseudo-code of Ignite-GPU for Genetic Algorithms on
the master node.
1 //Genetic Algorithm data structure and details:
2 ChromosomeLength ← L
3 GenesPopulation ← {List Of Genes}
4 //Execution configurations (e.g.):
5 MaxIterations ← 100
6 PopulationSize ← 1000
7 CUDAStreams ← 8
8 GPUBlockSize ← 32
9 ComputeTask ← A Callable Method //To execute on workers

10 Configure in-memory data caches of the cluster
11 Configure Ignite File System (IGFS)
12 Initialize cache with initial population
13 Copy CUDA source file and other configurations to IGFS
14 Iteration ← 0
15 while Iteration ≤ MaxIterations do
16 Partition and distribute current population among the workers
17 Send ComputeTask to all nodes
18 Wait for the results
19 Gather results from workers
20 Sort(results)
21 if TerminationCriteria is met then
22 Log the optimal solution
23 break
24 end
25 Iteration ← Iteration+ 1
26 end
27 Send Terminate signal to workers
28 Clean up caches and IGFS

To sum up, Algorithms 1 and  2 illustrate the process of running Genetic Algo-
rithms on Ignite-GPU on both master and worker nodes. As it is presented in Algo-
rithm  1, the application developer should specify their Genetic Algorithm’s data 
structure, configurations, and other problem-specific details in lines 2 and 3. Next, 
in lines 5 to 8, users can adjust execution configurations like the maximum num-
ber of iterations, initial population size, and also some GPU-related parameters like 
the number of CUDA streams and block size. Line 9 is the process of creating a 
Compute Task, which is the desired computation (process), which will run on the 
worker nodes. Then in lines 10 and 11, required Ignite in-memory caches are con-
figured, and in line 12, they are being initialized with a randomly-generated initial 
population.

In the 13’th line of the algorithm, the CUDA source code (Integrated kernels) is 
shared between nodes to run on their GPUs. Later in the While loop, the operation 
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of data and computation distribution, and gathering the results is performed until it 
reaches the maximum number of iterations or finds the optimal solution. Finally, the 
master node sends the termination signal to all workers and cleans up the allocated 
memories and configurations.

Algorithm 2: Pseudo-code of Ignite-GPU for Genetic Algorithms on
worker nodes.
1 Wait for a job from master
2 Receive the submitted configurations
3 Get CUDA source file from IGFS
4 Using JCuda, attach the CUDA binary code to the running JVM
5 Initialize the GPU and allocate required memory on host and device
6 if UsingCUDAStreams==TRUE then
7 Create and manage streams and corresponding events
8 end
9 while ComputeTask do

10 if Terminate signal is received then
11 Deallocate memories of the host and the device
12 Clean up configurations
13 break
14 end
15 Get the population from Ignite cache
16 Convert the population to ByteArray
17 Transfer ByteArrays to GPU using CUDA streams
18 Launch the GPU Kernel to perform:

Selection,Mutation,CrossOver, and FitnessEvaluation
19 Transfer results from GPU to host using CUDA streams
20 Copy back the results to Ignite cache
21 Send task completion signal to master
22 end

Algorithm 2 presents the worker’s code, which is the same for all workers. As can 
be seen, first, workers wait for a job from the master. As soon as they receive a job 
(line 1), they will receive its configuration, and the CUDA source code (lines 2 and 
3). Then, workers adjust the settings for the GPU code (line 4), allocate the required 
memory (line 5), and create demanded streams (lines 5 and 6). Line 9 checks 
whether there is a Compute Task, and in lines 10 to 14, if the termination signal 
is not received, they start the main processing phases. They pick the required data 
from memory, convert it to Byte Array, copy the data on the GPU using streams, and 
launch the GPU kernel. Lines 19 and 20 are related to returning the results, which 
are the chromosomes that genetic operations are done on them, and push them into 
the cache. It should be noted that the master node is also a worker, and it is not idle 
during workers computation. It also waits for a job and performs the worker code.

To summarize this section, first, a naïve implementation of Ignite-GPU was 
developed in which each kernel was running separately on the GPU. Next, the ker-
nels were integrated into one GPU kernel. Then, CUDA streams were used, and 
finally, some other optimizations were applied. The next section compares the per-
formance of Ignite and the fully optimized version of Ignite-GPU.
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4.4  Performance analysis

In this section, the performance of the provided platform is compared to the stand-
ard version of Ignite on one and four nodes. Ignite-GPU, in this section, is the fully 
optimized implementation of our platform.

Initially, we run our experiments on a single node that the results are shown in 
Fig.  11a. As represented, speedup improves with the increase in the size of data 
(population size), and the speedup for 1 K, 10 K, 100 K, and 1M population sizes 
are about 4X, 49X, 1177X, and 12391X, respectively. Although Ignite-GPU pro-
ceeds for populations larger than 1M, Ignite does not scale for large population sizes 
in a reasonable time, and it takes too much time to progress, so we cannot present its 
results for very large inputs.

In another setup, the same experiment has been done on a cluster with four nodes, 
and the results are shown in Fig.  11b. As can be observed, the speedup for 1  K, 
10 K, 100 K, and 1 M populations reaches about 1.7X, 46X, 1110X, and 10698X, 
respectively. Similarly, Ignite does not progress for populations larger than 1M.

As described, the speedup on the cluster is slightly less than the speedup on a 
single node, which is due to the overheads of data conversion operations. In Ignite-
GPU’s cluster, each node should perform a data conversion operation before placing 
the data into the cache before forwarding it to the master, and before transmitting 
data on the GPU. However, as shown in Fig. 12, for larger populations, the perfor-
mance of Ignite-GPU improves while running on the cluster. This line graph com-
pares Ignite-GPU’s performance on single and multi-node with different population 
sizes. Although for 1 K, 10 K, and 100 K, running on the cluster is not advanta-
geous, for larger than 100 K, the performance of the 4-node cluster is higher than a 
single node. The reason is that larger populations require more memory space and 
computation, so running on the cluster with more computational resources would 
be a better choice. All in all, based on the size of the input of the problem, it can be 
decided by the user whether to run on a single node or the cluster.

5  Conclusion

In this paper, we explored the use of GPUs as coprocessors in one of the distributed 
in-memory computing platforms—Apache Ignite. We tried to utilize the GPU’s pro-
cessing resources to gain more performance.

On the one hand, utilizing GPUs in Apache Ignite might be very useful, and by 
responding correctly to challenges ahead and using appropriate optimization tech-
niques according to the application, a remarkable performance improvement can be 
expected.

On the other hand, there are some considerations that should be taken into 
account. First of all, utilizing GPUs in every context adds some costs, such as buy-
ing and maintenance of hardware. Second, writing code on the proposed platform 
requires knowledge about GPU and its programming model (CUDA), and also 
needs more programming effort. Besides, the presented work focuses on the Genetic 
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Algorithm and provides the software infrastructure to run it on the GPU. Hence, 
running other algorithms on this platform requires much more programming effort.

To summarize, in this work, our goal is to add GPU-support to Ignite to accel-
erate the execution of time-consuming programs dealing with large volumes of 
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Fig. 11  Performance of Ignite and Ignite-GPU (streams: 8, block size: 32)
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data. We have investigated all the challenges facing the integration of in-memory 
platforms with GPUs and provided several solutions according to the under-study 
problem. Then, we applied the proposed solutions to Ignite and introduced Ignite-
GPU as a GPU-enabled distributed in-memory platform. Ignite-GPU showed about 
12391X speedup on the Genetic Algorithm as a workload.

Future work we are interested in performing to improve our framework include 
the following: 

∙  Ignite-GPU currently supports Genetic Algorithms, and we are studying larger 
and more time-consuming problems with various data types to implement on the 
provided platform in order to demonstrate its versatility.

∙  In addition to Genetic Algorithms, we plan to run other categories of Ignite 
applications on the GPU—such as streaming applications, employing the tech-
niques presented in this paper.

∙  Being able to use the GPU as a co-processor in Ignite, we plan to divide the 
workload between CPU and GPU and utilize both of them simultaneously.
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