
Efficient Process Arrival Pattern Aware Collective
Communication for Deep Learning

Pedram Alizadeh
ECE Department
Queen’s University

Kingston, ON, Canada
18pm7@queensu.ca

Amirhossein Sojoodi
ECE Department
Queen’s University

Kingston, ON, Canada
amir.sojoodi@queensu.ca

Yıltan Hassan Temuçin
ECE Department
Queen’s University

Kingston, ON, Canada
yiltan.temucin@queensu.ca

Ahmad Afsahi
ECE Department
Queen’s University

Kingston, ON, Canada
ahmad.afsahi@queensu.ca

ABSTRACT
MPI collective communication operations are used extensively in
parallel applications. As such, researchers have been investigating
how to improve their performance and scalability to directly impact
application performance. Unfortunately, most of these studies are
based on the premise that all processes arrive at the collective call
simultaneously. A few studies though have shown that imbalanced
Process Arrival Pattern (PAP) is ubiquitous in real environments,
significantly affecting the collective performance. Therefore, de-
vising PAP-aware collective algorithms that could improve perfor-
mance, while challenging, is highly desirable. This paper is along
those lines but in the context of Deep Learning (DL) workloads that
have become maintstream.

This paper presents a brief characterization of collective commu-
nications, in particular MPI_Allreduce, in the Horovod distributed
Deep Learning framework and shows that the arrival pattern of
MPI processes is indeed imbalanced. It then proposes an intra-node
shared-memory PAP-aware MPI_Allreduce algorithm for small to
medium messages, where the leader process is dynamically cho-
sen based on the arrival time of the processes at each invocation
of the collective call. We then propose an intra-node PAP-aware
algorithm for large messages that dynamically constructs the re-
duction schedule at each MPI_Allreduce invocation. Finally, we
propose a PAP-aware cluster-wide hierarchical algorithm, which is
extended by utilizing our intra-node PAP-aware designs, that im-
poses less data dependency among processes given its hierarchical
nature compared to flat algorithms. The proposed algorithms de-
liver up to 58% and 17% improvement at the micro-benchmark and
Horovod with TensorFlow application over the native algorithms,
respectively.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9799-5/22/09. . . $15.00
https://doi.org/10.1145/3555819.3555857

CCS CONCEPTS
• Computing methodologies → Parallel programming lan-
guages.

KEYWORDS
MPI, Distributed Deep Learning, Collective Communication, Pro-
cess Arrival Pattern, MPI_Allreduce

ACM Reference Format:
Pedram Alizadeh, Amirhossein Sojoodi, Yıltan Hassan Temuçin, and Ahmad
Afsahi. 2022. Efficient Process Arrival Pattern Aware Collective Communica-
tion for Deep Learning. In EuroMPI/USA’22: 29th European MPI Users’ Group
Meeting (EuroMPI/USA’22), September 26–28, 2022, Chattanooga, TN, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3555819.3555857

1 INTRODUCTION
The Message Passing Interface (MPI) [2] is the de facto standard
for parallel programming in HPC applications. The MPI standard
provides different communication semantics such as point-to-point,
partitioned point-to-point, one-sided, and collective operations.
Collective communications have been extensively used in HPC
applications including distributed DL applications, and their per-
formance is critical to the performance of such applications [16].

Optimizing collective operations has been an active area of re-
search [4, 14, 18, 19, 25, 32, 33, 36, 39]. Studies have shown that opti-
mizing reduction collective operations, specifically MPI_Allreduce,
the most exploited collective in DL applications [5], can signif-
icantly improve the performance of distributed DL frameworks
[8–10, 37], such as Horovod [35], TensorFlow [3] and CNTK [34].
Unfortunately, however, similar to other collective operations, re-
duction algorithms have been optimized mainly under the premise
that all processes start the operation at the same time. Research
conducted on the arrival time of processes at the collective calls
has shown that this is rarely the case, and that imbalanced Process
Arrival Pattern are ubiquitous in HPC applications [12, 17, 23, 29].
It has been shown that the well-performing collective algorithms
for the balanced micro-benchmarks, which are usually the algo-
rithms of choice in MPI implementations, perform poorly under
imbalanced process arrival patterns [12]. Therefore, it is important

68

https://doi.org/10.1145/3555819.3555857
https://doi.org/10.1145/3555819.3555857


EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA Pedram Alizadeh, Amirhossein Sojoodi, Yıltan Hassan Temuçin, and Ahmad Afsahi

to propose new algorithms capable of exploiting process imbal-
ance to deliver high performance when there is an asynchrony
among the processes arriving at the collective operation. We study
the PAP behavior of the Horovod + TensorFlow application, and
then propose different PAP-aware designs capable of delivering
high-performance under imbalanced PAPs. This paper makes the
following contributions:

• We characterize the communication pattern of Horovod +
TensorFlow and provide evidence that MPI processes arrive
asynchronously at the MPI_Allreduce collective calls.

• We propose an intra-node PAP-aware shared-memory aware
MPI_Allreduce algorithm for small to mediummessages that
dynamically chooses the leader of the operation based on
the arrival time of the processes at each invocation of the
collective call to achieve performance. We observe up to 56%
improvement over native algorithms under different process
arrival patterns.

• We propose an intra-node PAP-aware MPI_Allreduce for
large messages that dynamically constructs the reduction
schedule based on the arrival order of the processes. This
algorithm lets the arriving processes contribute their data
and leave the collective as soon as possible without a priori
knowledge of the arrival pattern. The experimental results
show up to 73% and 44% improvement for MPI_Reduce and
MPI_Allreduce operations over the best performing native
algorithms, respectively.

• Based on node-wide and cluster-wide PAP forMPI_Allreduce,
we show that hierarchical cluster-wide algorithms outper-
form their flat counterparts due to imposing less data depen-
dency on the processes. We extend our PAP-aware hierar-
chical cluster-wide algorithm with the proposed PAP-aware
intra-node collectives. Micro-benchmarks results show up to
57% performance improvement under imbalanced process ar-
rival patterns. Horovod with TensorFlow application results
show up to 17% performance gain.

The rest of this paper is organized as follows. Section 2 provides
background information for MPI collectives and process arrival
pattern. Section 3 discusses the related works on PAP-aware col-
lective algorithms. Section 4 presents the MPI_Allreduce PAP in
Horovod as the motivation behind our work. Section 5 presents
our PAP-aware proposals for MPI_Allreduce. Our experimental
results and analysis will be presented in Section 6. Finally, Section
7 concludes the paper and comments on future directions.

2 BACKGROUND
2.1 MPI Collective Communication
Collective communication operations involve multiple processes
and perform one-to-many, many-to-one, and many-to-many com-
munications in an optimized, yet convenient way. MPI_Allreduce
and MPI_Reduce are among the most commonly used collective
communication operations in HPC applications [6, 11, 30]. Vari-
ous algorithms and techniques have been proposed in literature to
improve their performance for different topologies, network inter-
connects, hardware technologies, process count, and message sizes
[13, 15, 20, 26, 31, 38]. Most existing algorithms have been designed
and evaluated under an impractical premise that all the processes

_

​

​

​ T
im

e
 (

T)
 

a0

a1

a2

a3

e0

e1

e2

e3

​​ T = a 

​∆0

​∆1

​∆2

​∆3

​P0 ​P1 ​P2 ​P3

​Arrival time Exit time

Figure 1: Process arrival pattern parameters

arrive at the collective call simultaneously. While this assumption
is correct for microbenchmark analysis, even in programs with
perfectly balanced workloads the processes arrive at the collective
site at notably different times [12].

2.2 Process Arrival Pattern
The process arrival pattern can significantly affect the performance
of collective communications in that it determines the time each
process can start its contribution to the operation. Therefore, it is
important to propose new algorithms to deliver high performance
for a broad range of process arrival patterns. In this section, we
introduce the metrics used in the literature to describe the arrival
pattern of processes in the applications. With a given world size of
n, processes P0, P1, ..., Pn−1, the PAP can be presented by the tuple
(a0,a1, ...,an−1) as illustrated in Figure 1. The PAP is considered to
be balanced if all the processes arrive at the collective site simul-
taneously, and imbalanced otherwise. The imbalance in the PAP
can be described by average-case imbalance time and worst-case
imbalance time metrics that were originally defined in [12].

The worst-case (maximum) imbalance time (Ω), defined in Equa-
tion (2.1), denotes the difference in time between the earliest ar-
riving process and the last process entering the collective. The
average-case imbalance time (∆), on the other hand, is the average
time difference between the arrival time of each process and the
average of arrival times. The average of arrival times (ā), and the
average-case imbalance time have been illustrated in Equation (2.2
(a)) and Equation (2.3), respectively.

Ω =maxi {ai } −mini {ai } (2.1)

ā =
a0 + a1 + ... + an−1

n
(2.2 (a))

∆i = |ai − ā | (2.2 (b))

∆̄ =
∆0 + ∆1 + ... + ∆n−1

n
(2.3)

The average-case imbalance factor and the worst-case (maximum)
imbalance factor are two other metrics that are very useful for

69



Efficient Process Arrival Pattern Aware Collective Communication for Deep Learning EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA

characterizing the imbalanced PAPs. Let α be the time it takes to
communicate a message (equal to the size of the message in the
collective). The average-case imbalance factor ∆̄

α , and worst-case
imbalance factor Ω

α are defined as the average-case imbalance time
and worst-case imbalance time normalized by the time α .

3 RELATEDWORK
Faraj et al. [12] studied the process arrival pattern characteristics
of FT, LAMMPS, NBODY, and NTUBE MPI applications on two
HPC platforms. The authors introduced the average and worst-case
imbalance factors described in Section 2.2 to measure the imbalance
in the Process Arrival Time (PAT). They showed that the differences
between the PATs at a collective operation are usually significant,
even for applications with perfectly balanced workloads.

Patarasuk and Yaun [24] investigated the performance of vari-
ous MPI_Bcast algorithms under different PAPs and showed that
they could not achieve performance for most PAPs. They proposed
two PAP-aware algorithms for broadcast with large message sizes,
where the root sends the data to the processes as they enter the
collective call. However, if multiple processes arrive at the collec-
tive call simultaneously, the root initiates a sub-group broadcast
among the newly-arrived processes and assigns a process within
the sub-group to forward the data to the rest of the sub-group pro-
cesses. This work does not study reduce and allreduce operations.
Furthermore, the proposed algorithm is not built on hierarchical
algorithms to take advantage of the fast intra-node shared mem-
ory on modern systems with hierarchical architectures to reduce
the communication latency. Instead, they use MPI point-to-point
primitives to communicate control messages as well as data.

Qian and Afsahi [29] proposed RDMA-based PAP-aware algo-
rithms for MPI_Allgather and MPI_Alltoall routines for different
message sizes on InfiniBand clusters. Instead of sending/receiving
additional control messages, the authors used the RDMA control
registers for notifying each process of the arrival of other processes.
They also extended their work for having a better performance
for small messages by making their design shared-memory aware.
Although the algorithms proposed in this work achieve good perfor-
mance in the presence of imbalance, they are aimed for the systems
supporting Infiniband RDMA. Otherwise, they would require alter-
native synchronization/control mechanisms.

Proficz [27] proposed two PAP-aware algorithms for the MPI
Allreduce operation, namely Sorted Linear Tree (SLT) and Pre-
Reduced Ring (PRR) algorithms. The author introduced a back-
ground thread for each process to monitor the progress of the com-
putation phase. The background thread estimates the remaining
computation time for its process and communicates this informa-
tion to other processes. Using the gathered data, each background
thread is able to approximate the PAP for all processes, which is then
used by the proposed algorithms. The SLT algorithm is based on the
linear tree algorithm. Using the estimated PAP, the SLT algorithm
sorts the processes based on their arrival times. Then, the algorithm
allows the faster processes to start the communication before the
later ones arrive. It is shown that the SLT algorithm can deliver
a speedup of up to 1.16 over the standard linear tree algorithm
in specific cases. The PRR algorithm is an extension of the ring
algorithm. In the PRR algorithm, the number of reducing pre-steps

by the faster processes is calculated based on the predicted process
arrival times. This way, a speedup of up to 1.14 could be achieved
over the regular ring algorithm for certain PAP. The proposed SLT
and PRR algorithms delivered 4.2% and 4.0% improvement over a
ring algorithm for training a convolutional neural network with
the CIFAR-10 [1] dataset. One problem with this method is that
introducing an extra thread would lead to oversubscription of the
processing cores and consequently, performance penalties. In addi-
tion, having the background threads to monitor the progress of the
computation phase may require instrumenting the source code of
applications incurring additional performance overheads.

Marendic et al. [22] studied the performance of reduction algo-
rithms under imbalanced PAPs. They propose two load balancing
reduction algorithms, static and dynamic. The static algorithm
depends on a priori knowledge of PATs of all the participating
processes and is shown to achieve near-optimal latency. This algo-
rithm is based on the unrealistic assumption that the PATs can be
predicted before the call to the collective operation. The dynamic
algorithm is an extension of the binomial tree algorithm and does
not require a priori information about the PATs. The authors use
small control messages to signal the PATs between the involved
processes so the early arriving processes can reduce their data and
redirect their results to the later arriving ones. One major problem
with this work is that it does not consider all the possible PAPs
in their design. In the proposed algorithm, the imbalance in the
PAP can only be absorbed if the neighbor processes exhibit simi-
lar arrival pattern; otherwise, the communication progression will
be hindered or at least will not be optimal. It was shown that for
specific PAPs and when there is only a single slow process, the
proposed algorithm outperforms the other algorithms.

There are other works on improving collective performance in
DL applications based on their inherent load imbalance [21, 28],
however, they use a different approach in tackling them than our
work. Pumma et al. study the effect of load imbalance in scalability
limitations of TensorFlow and Horovod. Their proposals improve
the performance for training various neural networks by reducing
the resource contention under imbalanced workloads. Li et al. pro-
pose eager Stochastic Gradient Descent (SGD) which outperforms
traditional synchronous SGDs by reducing the number of global
synchronizations required for decentralized gradient accumulation.

4 MOTIVATION: COMMUNICATION
CHARACTERIZATION OF HOROVOD

The communication characterization of parallel applications is es-
sential in that the findings can be used to improve their perfor-
mance. For that, we study the frequency and run-time contribution
of different collective operations in Horovod with TensorFlow. We
introduce the most critical collective and further investigate the
frequency of message sizes and their contribution to the collective’s
overall run-time, and its process arrival pattern.

4.1 Experimental Setup
Experiments were conducted on Cedar, a heterogeneous cluster at
Compute Canada with 192 nodes, each having two Intel Silver 4216
Cascade Lake for a total of 186 GB of memory and 32 CPU cores,
running at 2.1 GHz. Each node also has four NVIDIA V100 32GB

70



EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA Pedram Alizadeh, Amirhossein Sojoodi, Yıltan Hassan Temuçin, and Ahmad Afsahi

HBM2 GPUs connected via NVLink. A 100 Gb/s Intel Omni-Path
interconnect connects all the nodes together.

We use the CUDA-aware implementation of MVAPICH2-2.3 with
CUDA 10.0.130, Horovod-0.18.0 with synthetic benchmarks and
TensorFlow-1.13.0. The benchmark runs for 10 iterations and uses
10 batches of size 32 as default, and for all the tests we assigned one
process per GPU and distributed the available CPU cores evenly
among processes. Using the PMPI interface [2], we developed a cus-
tom profiler to study the MPI collective characteristics and process
arrival patterns. We use MPI_Wtime for timing measurement and a
barrier synchronization after MPI_Init to synchronize the clocks
globally between the processes across the nodes, with an accuracy
equal to the latency of sending a few small messages.

4.2 Collective Communication
Characterization

Figure 2 shows that for the ResNet50 model, MPI_Allreduce ac-
counts for 75% of the number of collective calls and 96% of the
communication run-time on Cedar cluster. Broadcast is the second
important operation which makes up 17% of the collectives and
contributes up to 4% to the communication run-time. Allgather,
gather, and gatherv operations account for the remaining 8% of the
collectives and less than 1% of the communication run-time. The
results for other DL models, VGG16 and DenseNet201, and GPU
counts follow the same trend, and so we do not report them.

Figure 2: Frequency and run-time contribution of different
MPI collectives forHorovod + TensorFlowwith ResNet50 on
Cedar (256 GPUs, 64 nodes)

We further studied the frequency and run-time contribution
of MPI_Allreduce among different message sizes. Our profiling
results show that Horovod uses allreduce with messages in the
4B-64MB range. Figure 3 shows that allreduce with small message
sizes account for the majority of all the allreduce calls and their
communication run-time by 89% and 65% for ResNet50 DL model,
respectively. Medium message sizes account only for 1% of the
allreduce calls which translates to less than 1% of the allreduce
communication time. The second important message size sub-range
in terms of frequency of calls is the large message allreduce which
makes up 10% of all the allreduce calls, contributing to 35% of the
allreduce run-time for ResNet50. These results suggest that small
and large message sizes should be the focus of our study.

4.3 MPI_Allreduce Process Arrival Pattern
In this section, we investigate the cluster-wide and then the node-
wide PAP metrics for MPI_Allreduce in Horovod + TensorFlow for

Figure 3: Contribution of different message sizes to the
MPI_Allreduce frequency and run-time for Horovod + Ten-
sorFlow with ResNet50 on Cedar (256 GPUs, 64 nodes)

ResNet50. Similar results are observed for VGG16 and DenseNet201,
but for space reasons we do not report them here.

4.3.1 Cluster-wide Study. Table 1 presents the worst-case and
average-case imbalance factors, averaged across the invocations by
all processes in the cluster for allreduce in Horovod for ResNet50.
As it can be seen, both the average worst-case and average-case
imbalance factors are very large, particularly for small messages,
which suggests that the process arrival pattern is noticeably im-
balanced. In other words, the PAP for medium/large messages are
generally less imbalanced than those with small messages. How-
ever, it should be mentioned that the communication latency for
large messages (e.g., 64MB) is much larger than small messages.

Table 1: The average cluster-wide worst-case and average-
case imbalance factors for MPI_Allreduce for Horovod +
TensorFlow with ResNet50 on Cedar (256 GPUs, 64 nodes)

Message Range Imbalance Factor
Cluster-wide Metrics
Worst Average

All Message Sizes 33631.77 5516.57
Small Messages 37767.87 6194.69
Medium Messages 327.21 94.41
Large Messages 5.85 1.07

Figure 4 depicts the maximum and average imbalance factors
at each invocation of allreduce in Horovod for ResNet50 on Cedar
cluster. It is evident that the majority of invocations have similar
maximum/average imbalance factors, while there are only a few pe-
riods of spikes that occur from time to time. Although the imbalance
pattern for each of the invocations seems random, a phased behav-
ior can be noted in the process arrival patterns. In other words, the
process arrival patterns tend to remain in a roughly steady range
for a long span of time before they fluctuate drastically.

4.3.2 Node-wide Study. We extract the node-wide worst-case and
average-case imbalance factors for the processes and report the
average across the nodes. Table 2 shows that the average imbalance
factors on each node are significantly lower than their cluster-wide
counterparts. In other words, processes on the same node arrive at
the collective calls with considerably less delay with respect to each
other, compared to all other processes on the cluster. This is likely

71



Efficient Process Arrival Pattern Aware Collective Communication for Deep Learning EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA

0 500 1000 1500 2000 2500 3000
Invocation

0.0

0.2

0.4

0.6

0.8

1.0

Im
ba

la
nc

e 
Fa

ct
or

1e6
Maximum
Average

(a) All message sizes

0 500 1000 1500 2000 2500
Invocation

0.0

0.2

0.4

0.6

0.8

1.0

Im
ba

la
nc

e 
Fa

ct
or

1e6
Maximum
Average

(b) Small message sizes

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Invocation

0

500

1000

1500

2000

2500

Im
ba

la
nc

e 
Fa

ct
or

Maximum
Average

(c) Medium message sizes

0 50 100 150 200 250 300
Invocation

0

25

50

75

100

125

150

175

Im
ba

la
nc

e 
Fa

ct
or

Maximum
Average

(d) Large message sizes

Figure 4: The maximum/average imbalance factors for MPI_Allreduce in Horovod + TensorFlow for ResNet50 with 256 GPUs,
evenly distributed among 64 nodes on Cedar

because intra-node processes suffer from similar hardware/software
related issues resulting in their imbalanced arrival time.

Overall, the node-wide and cluster-wide results motivate us
to design PAP-aware collective algorithms for MPI_Allreduce to
enhance the performance of Horovod +TenorFlow DL application.

Table 2: The average node-wide worst-case and average-case
imbalance factors for MPI_Allreduce for Horovod + Tensor-
Flow with ResNet50 on Cedar (256 GPUs, 64 nodes)

Message Range Imbalance Factor
Node-wide Metrics
Worst Average

All Message Sizes 7747.23 2848.16
Small Messages 8698.83 3197.90
Medium Messages 220.12 92.99
Large Messages 1.84 0.77

5 PROPOSED PAP-AWARE MPI_ALLREDUCE
ALGORITHMS

5.1 Node-wide PAP-aware MPI_Allreduce for
Small and Medium Messages

As the communication characterization of Horovod in Section
4.3 showed, the process arrival time of the MPI processes can
be significantly imbalanced, particularly for small messages in
MPI_Allreduce in Deep Learning workloads. In this section, we
first introduce the native intra-node MVAPICH algorithm for small
message MPI_Allreduce and then propose a PAP-aware adaptive
design. In MVAPICH, the algorithm of choice for small message
sizes is a two-step shared-memory algorithm. In the first phase, the
leader process, the process with the intra-node rank of zero, waits
for all the processes on its node to arrive at the collective call. Once
all the processes arrive and copy their data into the shared-memory,
the leader process reduces the data in the shared-memory. In the
second phase, the leader process sends the reduced data to all pro-
cesses on the node via a shared-memory broadcast operation. One
major problem with the aforementioned algorithm is that it does
not take into account the arrival pattern of the processes. In fact,
it performs poorly when some processes enter the MPI_Allreduce
well after the other processes. This is because the leader process
will not start the intra-node reduce operation until all processes

have already entered the collective operation. We address this issue
by having the leader process poll on the arrival of processes. This
way, the leader can reduce the data as soon as the processes arrive.
However, the proposed approach does not provide an opportunity
for enhancement if the leader process arrives last, or close to last.
This led us to consider process arrival time in our design and choose
the leader process dynamically at run-time. This way, we let the
early arriving processes contribute to the progression of the reduce
operation without the need to wait for all the processes to arrive.

Our proposed intra-node PAP-aware MPI_Allreduce algorithm
for small and medium messages, Small-PAP-aware, consists of two
steps, as follows:

• Phase 1: Intra-node PAP-aware shared-memory reduce by
the leader process of the node

• Phase 2: Intra-node shared-memory broadcast

However, unlike MVAPICH, in our design for the reduce step,
at each invocation of the MPI_Allreduce, we dynamically assign
the earliest arriving process of each node as the leader of that node,
responsible for the reduction operation. Other processes only need
to copy their data into the shared-memory upon their arrival and
set a flag to make the leader process aware that their data is in the
shared-memory and ready to be reduced. The leader process polls
on the flags and executes the reduction operation whenever data is
ready. For the broadcast phase, we use a shared-memory broadcast
by the leader process, where the leader simply writes its data into
the shared-memory and all the other processes on the node copy
the data from the shared-memory into their own address space.

Algorithm 1 presents our proposed design. In order to implement
the synchronization between processes on each node for assigning
the earliest process as the leader process of that node, we use two
variables Leader_Defined_Flag and Is_Leader. Leader_Defined_Flag
is a shared variable among the processes residing on the same node.
This flag is protected by lock/unlock to avoid race conditions, so that
the first arriving process can be safely determined. Is_Leader, on the
other hand, is a local variable to each process which demonstrates
whether the process has been assigned as the leader responsible for
the execution of the reduction operation. In addition to the variables
stated above, we use two other shared buffers, Data_Buffer and
Data_Ready_Flags. This way, the processes could share their data
and their availability with the leader process through the shared-
memory. Data_Buffer is the shared buffer where the processes copy
their data into their preallocated segments so that the leader process

72



EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA Pedram Alizadeh, Amirhossein Sojoodi, Yıltan Hassan Temuçin, and Ahmad AfsahiEuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA Pedram Alizadeh, Amirhossein Sojoodi, Yıltan Hassan Temuçin, and Ahmad Afsahi

Algorithm 1: Node-wide PAP-aware MPI_Allreduce for
Small and Medium Messages
Input :The data residing in send buffers (sendbuf )
Output :The data residing in receive buffers (recvbuf )
Variables:
Leader_Defined_Flag: A shared flag protected by lock/unlock to
determine the first arrived (the leader) process.

Data_Buffer: A shared buffer populated by processes with their
data.

Data_Ready_Flags: A shared buffer consisting of flags, each
dedicated to one process, demonstrating whether the process’s
data in the Data_Buffer is ready.

Is_Leader: A local variable determining the leader process.

begin
1 if Leader_Defined_Flag == 0 then
2 if trylock(&mutex) then
3 if Leader_Defined_Flag == 0 then
4 Leader_Defined_Flag = 1;
5 Is_Leader = 1;

end
6 unlock(&mutex);

end
end

7 if Is_Leader == 1 then
8 while Operation_Progression < (local_size − 1) do
9 for (𝑖 = 0; 𝑖 < 𝑙𝑜𝑐𝑎𝑙_𝑠𝑖𝑧𝑒 ; 𝑖 + +) do
10 if Data_Ready_Flags[i] == 1 then
11 Operation_Progression++;
12 Data_Ready_Flags[i] = 0 ;
13 reduce(recvbuf, Data_Buffer[i]);
14 if Operation_Progression == (local_size − 1)

then
15 Copy(recvbuf, ..., Result,...);
16 for ( 𝑗 = 0; 𝑗 < 𝑙𝑜𝑐𝑎𝑙_𝑠𝑖𝑧𝑒 ; 𝑗 + +) do
17 Completion_flags[j] = 1;

end
end

end
end

end
18 else
19 Copy(sendbuf, ..., Data_Buffer[local_rank],...);
20 Data_Ready_Flags[local_rank] = 1;
21 while Completion_flags[local_rank] == 0 do
22 Wait for own Completion flag to be set

end
23 Copy(Result, ..., recvbuf,...);
24 Completion_flags[local_rank] = 0;

end
end

can execute the reduction operation on them. Data_Ready_Flags is
the shared buffer filled with flags, each dedicated to one process.
These flags demonstrate whether the data has been successfully
copied into the Data_Buffer by the corresponding processes.

Once a process enters the collective operation, it first reads the
Leader_Defined_Flag to check whether the leader process has been

defined. If the leader process has not been defined yet, it means
that the arrived process is among the earliest arriving processes
and hence could be assigned as the leader. Therefore, the process
tries to lock the lock variable. Upon acquiring the lock, the process
re-validates the Leader_Defined_Flag to ensure that no process
has been assigned as the leader so far. It then assigns itself as
the leader and informs other intra-node processes by setting the
Leader_Defined_Flag and releases the lock, as shown in Lines 1 to
6.

The processes can now perform the actions assigned to them
based on whether they are the leader process or not. Non-leader
processes copy the data in their sendbuf into the appropriate seg-
ment of Data_Buffer in the shared-memory and inform the leader
of its availability by setting its dedicated flag in Data_Ready_Flags
(Lines 18 to 20). The leader process, on the other hand, is respon-
sible for performing the reduction operation by polling on the
Data_Ready_Flags. Whenever a data is ready in the Data_Buffer,
the leader reduces it into its recvbuf. This operation continues until
there is no more data to be reduced. At this point, the result of
the intra-node reduce step of the hierarchical MPI_Allreduce is
available in the recvbuf of the leader process (Lines 7 to 13).

The second phase (shared-memory broadcast) begins by the
leader process copying the result of the reduce operation from
its own recvbuf into the dedicated area in Data_Buffer defined as
Result and sets the Completion_flags for each of the processes to
inform them that the collective result is ready in the shared-memory
(Lines 14 to 17). Then, the leader process resets the appropriate
flags Is_Leader and Leader_Defined_Flag for the next invocation of
the collective. The non-leader processes, on the other hand, poll on
their dedicated Completion_flags and once it is set, they copy the
MPI_Allreduce result from shared-memory into their own recvbuf
(Lines 21 to 22). Then, they reset their own Completion_flags for the
next MPI_Allreduce collective call (Line 23). Figure 5 presents an
example execution of the proposed PAP-aware MPI_Allreduce for
four processes. It should bementioned that our design is thread-safe,
and hence it can be used in multi-threaded environments.

P0 P1 P2 P3

Poll on Flags & 
Reduce Data

Leader
Determination

Arrival Time

Exit Time

Write

Poll on own 
Completion flag

Write Data & Set 
the Flag Set

Data_BufferData_Ready_Flags

Completion
 flags Result

Copy Result into 
own Receive 

Buffer

[0]

[1]

[2]

[3]

Write Result and 
Set Completion 

flags

Shared Memory

 T
im

e
 

Reset 
Appropriate 

flags

[0]

[1]

[2]

[3]

Figure 5: Example run of the proposed small/medium mes-
sage PAP-aware MPI_Allreduce algorithm for four processes

5.2 Node-wide PAP-aware MPI_Allreduce for
Large Messages

Copying large messages in and out of shared-memory is expensive.
Therefore, we propose a two-step node-wide PAP-aware Allreduce

can execute the reduction operation on them. Data_Ready_Flags is
the shared buffer filled with flags, each dedicated to one process.
These flags demonstrate whether the data has been successfully
copied into the Data_Buffer by the corresponding processes.

Once a process enters the collective operation, it first reads the
Leader_Defined_Flag to check whether the leader process has been

defined. If the leader process has not been defined yet, it means
that the arrived process is among the earliest arriving processes
and hence could be assigned as the leader. Therefore, the process
tries to lock the lock variable. Upon acquiring the lock, the process
re-validates the Leader_Defined_Flag to ensure that no process
has been assigned as the leader so far. It then assigns itself as
the leader and informs other intra-node processes by setting the
Leader_Defined_Flag and releases the lock, as shown in Lines 1 to
6.

The processes can now perform the actions assigned to them
based on whether they are the leader process or not. Non-leader
processes copy the data in their sendbuf into the appropriate seg-
ment of Data_Buffer in the shared-memory and inform the leader
of its availability by setting its dedicated flag in Data_Ready_Flags
(Lines 18 to 20). The leader process, on the other hand, is respon-
sible for performing the reduction operation by polling on the
Data_Ready_Flags. Whenever a data is ready in the Data_Buffer,
the leader reduces it into its recvbuf. This operation continues until
there is no more data to be reduced. At this point, the result of
the intra-node reduce step of the hierarchical MPI_Allreduce is
available in the recvbuf of the leader process (Lines 7 to 13).

The second phase (shared-memory broadcast) begins by the
leader process copying the result of the reduce operation from
its own recvbuf into the dedicated area in Data_Buffer defined as
Result and sets the Completion_flags for each of the processes to
inform them that the collective result is ready in the shared-memory
(Lines 14 to 17). Then, the leader process resets the appropriate
flags Is_Leader and Leader_Defined_Flag for the next invocation of
the collective. The non-leader processes, on the other hand, poll on
their dedicated Completion_flags and once it is set, they copy the
MPI_Allreduce result from shared-memory into their own recvbuf
(Lines 21 to 22). Then, they reset their own Completion_flags for the
next MPI_Allreduce collective call (Line 23). Figure 5 presents an
example execution of the proposed PAP-aware MPI_Allreduce for
four processes. It should bementioned that our design is thread-safe,
and hence it can be used in multi-threaded environments.

P0 P1 P2 P3

Poll on Flags & 
Reduce Data

Leader
Determination

Arrival Time

Exit Time

Write

Poll on own 
Completion flag

Write Data & Set 
the Flag Set

Data_BufferData_Ready_Flags

Completion
 flags Result

Copy Result into 
own Receive 

Buffer

[0]

[1]

[2]

[3]

Write Result and 
Set Completion 

flags

Shared Memory

 T
im

e
 

Reset 
Appropriate 

flags

[0]

[1]

[2]

[3]

Figure 5: Example run of the proposed small/medium mes-
sage PAP-aware MPI_Allreduce algorithm for four pro-
cesses

5.2 Node-wide PAP-aware MPI_Allreduce for
Large Messages

Copying large messages in and out of shared-memory is expensive.
Therefore, we propose a two-step node-wide PAP-aware Allreduce

73



Efficient Process Arrival Pattern Aware Collective Communication for Deep Learning EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USAEfficient Process Arrival Pattern Aware Collective Communication for Deep Learning EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA

Algorithm 2: Node-wide PAP-aware MPI_Reduce for
Large Messages
Input :The data residing in send buffers (sendbuf )
Output :The data residing in the root’s receive buffer (recvbuf )
Variables:
Process_Counter: A shared counter protected by lock/unlock to
keep the track of the number of arrived processes.

Sorted_Ranks_Buffer: A shared buffer filled with ranks of the
processes based on their arrival order.

Arrival_Rank: A local variable for storing the value of
Process_Counter.

begin
1 lock(&mutex);
2 Arrival_Rank = Process_Counter ;
3 Process_Counter + = 1;
4 unlock(&mutex);

5 Sorted_Ranks_Buffer[Arrival_Rank] = MPI_Rank;
6 if First Process to Arrive then
7 while (Sorted_Ranks_Buffer[Arrival_Rank + 1] = = NULL);
8 Send(... , Sorted_Ranks_Buffer[Arrival_Rank + 1] , ...);
9 else if Last Process to Arrive then
10 Receive(... , Sorted_Ranks_Buffer[Arrival_Rank - 1] , ...);
11 Reduce the received data with your own data.
12 if MPI_Rank ! = root then
13 Send(... , root , ...);

end
14 else
15 Receive(... , Sorted_Ranks_Buffer[Arrival_Rank - 1] , ...);
16 Reduce the received data with your own data.
17 while (Sorted_Ranks_Buffer[Arrival_Rank + 1] = = NULL);
18 Send(... , Sorted_Ranks_Buffer[Arrival_Rank + 1] , ...);

end
19 if (MPI_Rank = = root) && (!Last Process) then
20 Receive(... , Last Process , ...);

end
end

algorithm for large messages, Large-PAP-aware, consisting of a
PAP-aware reduce algorithm followed by a broadcast operation,
that achieves zero-copy data transfer by copying the data directly
from the send buffer of a process to the receive buffer of the next
arriving process. In our PAP-aware reduce algorithm, we allow the
early arriving processes to start the reduce operation before the
later processes arrive, and leave the collective as soon as they make
their contribution. One challenge with all PAP-aware algorithms is
to develop a way to inform every other process of the ranks that
have already arrived at the collective. One method for doing so is to
exchange point-to-point control messages between the processes
[24]. However, this introduces an extra overhead that affects the
performance. Tominimize the overhead of control messages, we use
a shared-memory structure between the processes on each node.

Algorithm 2 presents our proposed PAP-aware MPI_Reduce for
medium to large messages that minimizes the data dependency be-
tween the processes. Whenever a process arrives, it receives the re-
duced data from the last process that has arrived. After performing

its part to the reduce operation, the process passes the updated re-
duced data to the next arriving process and leaves the collective call.
In order to implement the synchronizations between the processes
necessary for the execution of our algorithm, we use two shared-
memory variables, Process_Counter and Sorted_Ranks_Buffer. Pro-
cess_Counter is a shared counter that is protected by lock/unlock
so the processes can safely access its value even at the presence of
race conditions. Sorted_Ranks_Buffer is a shared buffer containing
as many cells as the number of processes on the node. Each cell is
dedicated to a process based on its arrival order. The first cell of
the Sorted_Ranks_Buffer is assigned to the earliest arriving process,
while the final arriving process occupies the last cell. Each process
writes its MPI_Rank in its designated cell when it arrives. Since
Sorted_Ranks_Buffer is shared, each process will have access to
Arrival_Rank (determined by the position of the cell) andMPI_Rank
(determined by the value of the cell) of all processes on the node.

Once a process arrives at the collective call, it tries to lock the
lock variable. Upon acquiring the lock, the process reads the Pro-
cess_Counter’s value, recognizes its rank among the already arrived
processes, and stores it into a local variable called Arrival_Rank,
then increments the counter and releases the lock (Lines 1 to 4 of
Algorithm 2). Next, the process writes itsMPI_Rank in the appropri-
ate cell of Sorted_Ranks_Buffer that its Arrival_Rank suggests (Line
5). Now that the process is aware of its arrival rank, it can perform
the actions assigned to it based on its arrival time. For the earliest
process, since there is no predecessor, it only needs to wait for the
next process to arrive (through polling on the Sorted_Ranks_Buffer)
to pass its data and leave the collective call (Lines 6 to 8). For the pro-
cesses that arrive between the first and the last processes, the first
step is to receive the reduced data from their predecessor (the prede-
cessor process can be recognized through the Sorted_Ranks_Buffer),
and then reduce their own data with the received data and wait
for their successor to arrive. Upon their arrival, they will send the
updated data to it. At this point, they can leave the collective (Lines
14 to 18). When the last process arrives, it reduces its data with the
reduced data from the previous process and sends the result of the
final reduce operation to the root process (process zero, without
loss of generality) for the broadcast operation (Lines 9 to 13). The
reduce operation will be completed upon reception of the result by
the root process (Lines 19 and 20). Figure 6 presents an example
execution of the proposed node-wide PAP-aware MPI_Reduce algo-
rithm for four processes. It should be mentioned that although our
design has an 𝑂 (𝑛) time complexity for the reduction operation,
the minimum data dependency between the involved processes
results in better performance in imbalanced PAPs, compared to
algorithms with better time complexities. In addition, this is not
too detrimental given the per node GPU count in modern clusters.

For the broadcast operation, we utilize two broadcast algorithms
used frequently in MPI implementations. A shared-memory broad-
cast is used for up to 64KB messages, where each process copies
the data from shared-memory to its receive buffer, as explained in
Section 5.1. For larger messages, the commonly used Binomial-Tree
broadcast algorithm is used.

algorithm for large messages, Large-PAP-aware, consisting of a
PAP-aware reduce algorithm followed by a broadcast operation,
that achieves zero-copy data transfer by copying the data directly
from the send buffer of a process to the receive buffer of the next
arriving process. In our PAP-aware reduce algorithm, we allow the
early arriving processes to start the reduce operation before the
later processes arrive, and leave the collective as soon as they make
their contribution. One challenge with all PAP-aware algorithms is
to develop a way to inform every other process of the ranks that
have already arrived at the collective. One method for doing so is to
exchange point-to-point control messages between the processes
[24]. However, this introduces an extra overhead that affects the
performance. Tominimize the overhead of control messages, we use
a shared-memory structure between the processes on each node.

Algorithm 2 presents our proposed PAP-aware MPI_Reduce for
medium to large messages that minimizes the data dependency be-
tween the processes. Whenever a process arrives, it receives the re-
duced data from the last process that has arrived. After performing

its part to the reduce operation, the process passes the updated re-
duced data to the next arriving process and leaves the collective call.
In order to implement the synchronizations between the processes
necessary for the execution of our algorithm, we use two shared-
memory variables, Process_Counter and Sorted_Ranks_Buffer. Pro-
cess_Counter is a shared counter that is protected by lock/unlock
so the processes can safely access its value even at the presence of
race conditions. Sorted_Ranks_Buffer is a shared buffer containing
as many cells as the number of processes on the node. Each cell is
dedicated to a process based on its arrival order. The first cell of
the Sorted_Ranks_Buffer is assigned to the earliest arriving process,
while the final arriving process occupies the last cell. Each process
writes its MPI_Rank in its designated cell when it arrives. Since
Sorted_Ranks_Buffer is shared, each process will have access to
Arrival_Rank (determined by the position of the cell) andMPI_Rank
(determined by the value of the cell) of all processes on the node.

Once a process arrives at the collective call, it tries to lock the
lock variable. Upon acquiring the lock, the process reads the Pro-
cess_Counter’s value, recognizes its rank among the already arrived
processes, and stores it into a local variable called Arrival_Rank,
then increments the counter and releases the lock (Lines 1 to 4 of
Algorithm 2). Next, the process writes itsMPI_Rank in the appropri-
ate cell of Sorted_Ranks_Buffer that its Arrival_Rank suggests (Line
5). Now that the process is aware of its arrival rank, it can perform
the actions assigned to it based on its arrival time. For the earliest
process, since there is no predecessor, it only needs to wait for the
next process to arrive (through polling on the Sorted_Ranks_Buffer)
to pass its data and leave the collective call (Lines 6 to 8). For the pro-
cesses that arrive between the first and the last processes, the first
step is to receive the reduced data from their predecessor (the prede-
cessor process can be recognized through the Sorted_Ranks_Buffer),
and then reduce their own data with the received data and wait
for their successor to arrive. Upon their arrival, they will send the
updated data to it. At this point, they can leave the collective (Lines
14 to 18). When the last process arrives, it reduces its data with the
reduced data from the previous process and sends the result of the
final reduce operation to the root process (process zero, without
loss of generality) for the broadcast operation (Lines 9 to 13). The
reduce operation will be completed upon reception of the result by
the root process (Lines 19 and 20). Figure 6 presents an example
execution of the proposed node-wide PAP-aware MPI_Reduce algo-
rithm for four processes. It should be mentioned that although our
design has an O(n) time complexity for the reduction operation,
the minimum data dependency between the involved processes
results in better performance in imbalanced PAPs, compared to
algorithms with better time complexities. In addition, this is not
too detrimental given the per node GPU count in modern clusters.

For the broadcast operation, we utilize two broadcast algorithms
used frequently in MPI implementations. A shared-memory broad-
cast is used for up to 64KB messages, where each process copies
the data from shared-memory to its receive buffer, as explained in
Section 5.1. For larger messages, the commonly used Binomial-Tree
broadcast algorithm is used.

5.3 Cluster-wide PAP-aware MPI_Allreduce
InMVAPICH, the algorithm of choice forMPI_Allreduce formedium
to largemessages (larger than 64KB) is a flat Reduce-Scatter followed

74



EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA Pedram Alizadeh, Amirhossein Sojoodi, Yıltan Hassan Temuçin, and Ahmad Afsahi

P0 P1 P2 P3

Reduce
Operation

Arrival
 Registration

Arrival Time

Exit Time

Send

Wait Time

 T
im

e
 

Figure 6: Example run of the proposed large message PAP-
aware reduce algorithm for four processes

by an Allgather (RSA), as it delivers the best performance among the
other algorithms according to the microbenchmarks used to derive
its tuning table. These microbenchmarks only measure the perfor-
mance under perfectly balanced workloads when processes arrive
at the collective call simultaneously. In practical scenarios with
real application workloads on different environments, however,
the performance of flat algorithms are susceptible to imbalanced
PAPs because of the inherent data dependency that they introduce
among all the processes, which acts like an unnecessary implicit
synchronization between the processes in the cluster. Hierarchi-
cal algorithms, on the other hand, introduce less data dependency
among the processes, where the first and the last phases of the
algorithm are usually an intra-node collective operation that only
requires synchronization between the processes residing on the
same node. Therefore, we argue that the hierarchical algorithms
are less prone to performance degradation in the presence of imbal-
anced PAPs and hence, they are a better algorithm for applications
with imbalanced PAPs. This is supported by the imbalance factors
shown in Table 1 and Table 2, where the node-wide imbalanced
factors are much less than their cluster-wide counterparts for the
Horovod with TensorFlow workload.

For this study, we consider a three-phase cluster-wide hierarchi-
cal RSA algorithm, Hierarchical-RSA, for MPI_Allreduce, as follows.
We then extend the Hierarchical-RSA algorithm with our proposed
node-wide PAP-aware algorithms in Section 5.1 and Section 5.2 for
its intra-node phases, and refer to them as Hierarchical-RSA+Small-
PAP-aware and Hierarchical-RSA+Large-PAP-aware, accordingly.

• Phase 1: Intra-node reduce by the leader process
• Phase 2: Inter-node MPI_Allreduce among the leader pro-
cesses (RSA)

• Phase 3: Intra-node broadcast by the leader process

6 EVALUATION RESULTS AND ANALYSIS
In this section, we evaluate the performance of our proposed designs
for PAP-aware MPI_Allreduce collective against state-of-the-art
algorithms under imbalanced PAPs with different Maximum Imbal-
ance Factors (MIF). The experimental platform for our tests in this
section is the Cedar cluster described in Section 4.1.

6.1 Micro-benchmark Results

6.1.1 Node-wide PAP-aware MPI_Allreduce for Small and Medium
Messages. In this section, we evaluate our intra-node PAP-aware
MPI_Allreduce algorithm, Small-PAP-aware, for message sizes up to
64KB. For larger messages, the shared-memory-aware algorithms
in MVAPICH as well as our algorithm lose to non-shared-memory-
aware algorithms by a large margin. Therefore, we do not present
the results past 64KB messages. As discussed earlier, the default
intra-node MPI_Allreduce algorithm in MVAPICH for messages up
to 1KB is a two-step shared-memory algorithm. However, for mes-
sage sizes from 1KB to 64KB, MVAPICH switches to a flat recursive
doubling MPI_Allreduce algorithm.We call the set of two aforemen-
tioned algorithms Def-MVAPICH in the rest of this section. In order
to evaluate our PAP-aware shared-memory algorithm fairly, we also
compare its performance against an algorithm that uses the same
two-step shared-memory algorithm in MVAPICH, but for messages
up to 64KB. We call this algorithm shmem-MVAPICH. Performance
comparison is done under imbalanced PATs. For this purpose, we
use the balanced Ohio State University Micro-Benchmark (OMB)
suite [7] and induce a random computation before MPI_Allreduce
for each process to create an imbalanced workload. The upper
bound for the random computation is determined by the MIF. For
all micro-benchmark studies in this paper, we assume that the data
for the collective operation resides in the host buffers to show the
algorithmic impact of our design over the native algorithms.

Figure 7 compares our proposed PAP-aware algorithm against
the Def-MVAPICH and the shmem-MVAPICH with 32 processes and
imbalanced workloads with MIFs equal to 10, 20, and 50 on Cedar.
It should be mentioned that our design provides comparable results
with the default algorithms with 4 processes per node (PPN) due to
the overhead induced by locking/unlocking mechanism. However,
with increasing process count, our design outperforms the studied
algorithms by a larger margin. For that, we present the results
with 32 PPN in this section. As it can be seen in the figure, for a
small MIF of 10, our PAP-aware algorithm outperforms both the
Def-MVAPICH and the shmem-MVAPICH algorithms almost for all
message sizes, with a 22% improvement over the best performing
algorithm. As we increase the MIF to 20 and 50, we observe the
maximum performance improvement of 56% and 37% over the other
two algorithms, respectively. The improvement forMIF 50 is smaller
because the delay in the arrival time of the processes is so large that
it dominates the latency of the whole collective call. We observe
the same pattern for MIFs larger than 50, where the PAP-aware
algorithm outperforms the other algorithms for all message sizes.

6.1.2 Node-wide PAP-aware MPI_Allreduce for Large Messages. Fig-
ure 8 compares our intra-node PAP-aware MPI_Allreduce algo-
rithm, Large-PAP-aware, for large messages against the default RSA
algorithm, Def-MVAPICH (RSA), the Binomial Tree + Broadcast
algorithm, BT+Bcast, and the Reduce Scatter/Gather + Broadcast
algorithm, RSG+Bcast, under imbalanced PAPs with MIFs equal to
10, 20, and 50 on Cedar with 4 processes per node.

For a small MIF of 10, our PAP-aware algorithm outperforms all
the other algorithms for all message sizes larger than 64KBs, with
an average improvement of 18% over the best performing algorithm
for the message range of 64KB - 64MB. The maximum improvement
of 41% was observed for the message size of 1MB. As we increase
the MIF to 20, we observe 20% average improvement over the best

75



Efficient Process Arrival Pattern Aware Collective Communication for Deep Learning EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA

(a) MIF = 10

(b) MIF = 20

(c) MIF = 50

Figure 7: Comparison of the proposed Small-PAP-aware
MPI_Allreduce against the Def-MVAPICH and shmem-
MVAPICH algorithms under imbalanced workload, differ-
ent MIFs and 32 processes on a single node on Cedar

performing algorithm, with a maximum improvement of 44% for
512KB message. With a MIF of 50, the average improvement is 11%,
and the maximum improvement is 25% for the 512KB message over
the best performing algorithm. For significantly larger MIFs, al-
though our PAP-aware algorithm outperforms all the other studied
algorithms, the speedup decreases as we increase the MIF.

6.1.3 Cluster-wide PAP-aware MPI_Allreduce for Large Messages.
We compare the performance of our Hierarchical-RSA algorithm,
against the default flat RSA algorithm in MVAPICH under an im-
balanced workload and for medium to large messages (larger than
64KB) on 2 to 32 nodes with 4 PPN on Cedar cluster. The MIF is
chosen in a way to mimic the cluster-wide imbalanced process ar-
rival pattern of Horovod for ResNet50 for large messages that was
presented in Section 4.3. The results show that for all experiments,
the hierarchical algorithm has a smaller latency than the flat RSA
algorithm for most of the message sizes between 64KB to 64MB.
Table 3 shows the average, minimum, and maximum improvement
of the hierarchical algorithm over the flat algorithm, along with
the corresponding message size for the minimum and maximum
improvements. The results show that the average improvement
among all message sizes is greater than 20% for all the scenarios.
This confirms the superior performance of the hierarchical algo-
rithm over the flat algorithm in the presence of imbalanced PAP.
This is because in the hierarchical algorithm the early arriving
processes will only need to wait for other processes on their own

(a) MIF = 10

(b) MIF = 20

(c) MIF = 50

Figure 8: Comparison of the proposed Large-PAP-
aware MPI_Allreduce against the Def-MVAPICH (RSA),
"BT+Bcast", and "RSG+Bcast" algorithms under imbalanced
workload, different MIFs and 4 processes on a single node
on Cedar

node to arrive to start their communication, whereas in the flat
algorithm the communication progression is hampered until all the
processes across the cluster arrive.

Table 3: Performance improvement of Hierarchical-RSA
over Def-MVAPICH for up to 128 GPUs on Cedar, consider-
ing MIF of Horovod’s ResNet50

GPU Count Improvement

Average Min Message Size Max Message Size

8 20.01% 16.36% 32MB 49.5% 2MB
16 28.97% 8.15% 64MB 54.01% 128KB
32 28.64% 11.15% 64MB 55.81% 256KB
64 26.94% 19.43% 64MB 57.64% 128KB
128 23.17% 22.23% 32MB 56.76% 256KB

6.2 Horovod Application Results
In this section, we compare the performance of the proposed hier-
archical algorithm Hierarchical-RSA against the flat RSA algorithm
Def-MVAPICH for Horovod + tensorFlow. We use the Horovod syn-
thetic benchmarks, which provide the throughput of the image
classification task by the number of images processed per second

76



EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA Pedram Alizadeh, Amirhossein Sojoodi, Yıltan Hassan Temuçin, and Ahmad Afsahi

Figure 9: Horovod + TensorFlow per-GPU throughput com-
parison between Def-MVAPICH and Hierarchical-RSA algo-
rithms for different DL models and 8 to 128 GPUs, evenly
distributed among 2 to 32 nodes on Cedar

(Images/Sec). Figure 9 exhibits the per-GPU throughput of the flat
RSA and the Hierarchical-RSA algorithms for different models for 8
to 128 GPUs, except for VGG16 and DensetNet201 datapoints for
128 GPUs that are missing. The results show that for the ResNet50
and the DenseNet201 models, the Hierarchical-RSA outperforms
the Def-MVAPICH algorithm for all the GPU counts by up to 17%
and 9%, respectively. For the VGG16 model, on the other hand, we
see that the flat RSA outperforms the Hierarchical-RSA algorithm.
To investigate the reasons behind this, we measured the MIF of the
VGG16 and the DenseNet201 and observed that the MIF of large
messages for the VGG16 model is less than one, whereas the MIF
of large messages for DenseNet201 is similar to ResNet50. This in-
dicates that the PAP for the VGG16 is quite balanced and therefore,
the flat RSA algorithm is a better choice for this model.

As the communication characterization of Horovod in Section
4.3 showed, the cluster-wide imbalance factor is significantly larger
than the node-wide imbalance factor, which suggests that inHorovod
the processes on the same node arrive at the collective call with
much less delay with respect to each other than to all the other
processes on the cluster. Consequently, Deep Learning applications
with the aforementioned characteristics could benefit from the hi-
erarchical algorithms, where the early arriving processes on each
node will not need to wait long for the processes on their node to
arrive to start the intra-node step; whereas with flat algorithms,
the waiting time between all the cluster-wide processes to start the
operation is much larger. Hence, the hierarchical algorithm delivers
much better performance compared to its flat counterpart under
the inherently imbalanced PAP of Horovod.

We study the performance of our Hierarchical-RSA+Small-PAP-
aware and Hierarchical-RSA+Large-PAP-aware algorithms, which
extend our Hierarchical-RSA algorithm with our node-wide PAP-
aware algorithms for its intra-node phases, against theDef-MVAPICH
and Hierarchical-RSA algorithms for Horovod + TensorFlow. From
the results presented in Figure 10, it is evident that the Hierarchical-
RSA+Small-PAP-aware algorithm is on par with the Hierarchical-
RSA algorithm and cannot enhance its performance. This is because,
as discussed in Section 6.1.1, our node-wide Small-PAP-aware algo-
rithm delivers comparable performance to the native algorithms for
4 PPN (one process per GPU). However, on computing nodes with

Figure 10: Horovod + TensorFlow total per-GPU through-
put comparison of Def-MVAPICH, Hierarchical-RSA,
Hierarchical-RSA+Small-PAP-aware, and Hierarchical-
RSA+Large-PAP-aware algorithms for different DL models
and 64 GPUs, evenly distributed among 16 nodes on Cedar

more than 4 GPUs or GPUs with theMIG/MPS feature, we would ex-
pect to see a superior performance for our Hierarchical-RSA+Small-
PAP-aware algorithm over the Hierarchical-RSA algorithm. We will
report our findings in a near future.

The results for Hierarchical-RSA+Large-PAP-aware shows per-
formance degradation compared to our proposed Hierarchical-RSA
and Hierarchical-RSA+Small-PAP-aware algorithms, as well as the
Def-MVAPICH. This is because, as discussed in Section 6.1.2, our
node-wide Large-PAP-aware algorithm for large messages starts to
outperform the other algorithms with MIFs larger than 10, whereas
the intra-node MIF of Horovod for large messages is close to two.

7 CONCLUSION AND FUTUREWORK
Researchers have long been investigating to improve the perfor-
mance of MPI collective communication operations from different
aspects. Most of these studies, however, are based on the premise
that all processes arrive at the collective call at the same time. Re-
search has shown that such an assumption is impractical in HPC
platforms and that the process arrival pattern, even in MPI applica-
tions with perfectly balanced workloads, is sufficiently imbalanced
to affect the performance adversely. In this work, we study the com-
munication characterization of Horovod distributed Deep Learning
framework with TensorFlow, including MPI_Allreduce and its PAP.
We propose two intra-node PAP-aware MPI_Allreduce algorithms
for different message sizes. The proposed algorithms achieve up to
56% and 44% performance improvement over the native algorithms
under different imbalanced PAPs, respectively. We then propose
cluster-wide hierarchical PAP-aware MPI_Allreduce algorithms,
which induce less data dependency among processes compared to
flat algorithms and are capable of achieving high performance un-
der imbalanced workloads. These algorithms achieve up to 58% and
17% improvement over native algorithms at the micro-benchmark
level and for Horovod + TensorFlow, respectively.

As for future work, we would like to show the effectiveness of
our PAP-aware designs on clusters with larger GPU counts per
node and with more modern GPUs, as well as other Deep Learning
workloads. We plan to optimize our algorithms to minimize the

77



Efficient Process Arrival Pattern Aware Collective Communication for Deep Learning EuroMPI/USA’22, September 26–28, 2022, Chattanooga, TN, USA

overhead of dynamically constructing the reduction schedule to
achieve performance even for applications with small MIFs. We
would also like to consider other communication libraries such
as Open MPI with UCX, UCC, and NCCL for our PAP-aware col-
lective ideas. We plan to explore PAP-aware algorithms for other
collectives such as MPI_Alltoall and MPI_Alltoallv that are used
in other Deep Learning applications. Finally, we would like to de-
velop a mechanism that detects/predicts the PAP to invoke/disable
appropriate PAP-aware algorithms based on the imbalanced PAP.

ACKNOWLEDGMENTS
This research was supported in part by the Natural Sciences and
Engineering Research Council of Canada Grant RGPIN 05389-2016
and Compute Canada. Computations were performed on the Cedar
compute clusters at Simon Fraser University.

REFERENCES
[1] (June, 2022). CIFAR-10 and CIFAR-100 datasets. https://www.cs.toronto.edu/

~kriz/cifar.html
[2] (June, 2022). Message Passing Interface (MPI 4.0). http://www.mpi-forum.org
[3] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,

A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M.
Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K.
Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. 2015. TensorFlow: Large-Scale
Machine Learning on Heterogeneous Systems. https://www.tensorflow.org/

[4] Q. Ali, S. P. Midkiff, and V. S. Pai. 2009. Efficient high performance collective com-
munication for the Cell blade. In Proceedings of the 23rd international conference
on Supercomputing (ICS). 193–203.

[5] T. Ben-Nun and T. Hoefler. 2019. Demystifying parallel and distributed Deep
Learning: An in-depth concurrency analysis. ACM Computing Surveys (CSUR)
52, 4 (2019), 1–43.

[6] D. E. Bernholdt, S. Boehm, G. Bosilca, M. Gorentla Venkata, R. E. Grant, T.
Naughton, H. P. Pritchard, M. Schulz, and G. R. Vallee. 2020. A survey of MPI
usage in the U.S. exascale computing project. Concurrency and Computation:
Practice and Experience (CCPE) 32, 3 (2020), e4851.

[7] D. Bureddy, H. Wang, A. Venkatesh, S. Potluri, and D. K. Panda. 2012. OMB-
GPU: A Micro-Benchmark Suite for Evaluating MPI Libraries on GPU Clusters.
In Proceedings of the 19th European Conference on Recent Advances in the Mes-
sage Passing Interface (Vienna, Austria) (EuroMPI’12). Springer-Verlag, Berlin,
Heidelberg, 110–120. https://doi.org/10.1007/978-3-642-33518-1_16

[8] A. Castell’o, E. S. Quintana-Ort’i, and J. Duato. 2021. Accelerating distributed
deep neural network training with pipelined MPI allreduce. Cluster Computing
24, 4 (2021), 3797–3813.

[9] C.-H. Chu, P. Kousha, A. A. Awan, K. S. Khorassani, H. Subramoni, and D. K.
Panda. 2020. NV-Group: Link-Efficient Reduction for Distributed Deep Learn-
ing on Modern Dense GPU Systems. In Proceedings of the 34th ACM Interna-
tional Conference on Supercomputing (Barcelona, Spain) (ICS ’20). Association
for Computing Machinery, New York, NY, USA, Article 6, 12 pages. https:
//doi.org/10.1145/3392717.3392771

[10] C.-H. Chu, X. Lu, A. A. Awan, H. Subramoni, J. Hashmi, B. Elton, and D. K. Panda.
2017. Efficient and scalable multi-source streaming broadcast on GPU clusters
for deep learning. In 2017 46th International Conference on Parallel Processing
(ICPP). IEEE, 161–170.

[11] S. Chunduri, S. Parker, P. Balaji, K. Harms, and K. Kumaran. 2018. Characterization
of MPI usage on a production supercomputer. In International Conference for High
Performance Computing, Networking, Storage and Analysis (SC). IEEE, 386–400.

[12] A. Faraj, P. Patarasuk, and X. Yuan. 2008. A study of process arrival patterns for
MPI collective operations. International Journal of Parallel Programming 36, 6
(2008), 543–570.

[13] I. Faraji andA. Afsahi. 2015. Hyper-Q aware intranodeMPI collectives on the GPU.
In Proceedings of the First International Workshop on Extreme Scale Programming
Models and Middleware (ESPM2). 47–50.

[14] I. Faraji and A. Afsahi. 2018. Design considerations for GPU-aware collective
communications in MPI. Concurrency and Computation: Practice and Experience
(CCPE) 30, 17 (2018), e4667.

[15] K. Hasanov and A. Lastovetsky. 2017. Hierarchical redesign of classic MPI
reduction algorithms. The Journal of Supercomputing 73, 2 (2017), 713–725.

[16] T. Hoefler, T. Schneider, and A. Lumsdaine. 2008. Accurately measuring collective
operations at massive scale. In 2008 IEEE International Symposium on Parallel and

Distributed Processing (IPDPS). IEEE, 1–8.
[17] T. Hoefler, T. Schneider, and A. Lumsdaine. 2010. Characterizing the influence

of system noise on large-scale applications by simulation. In SC’10: Proceedings
of the 2010 ACM/IEEE International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 1–11.

[18] G. Inozemtsev and A. Afsahi. 2012. Designing an offloaded nonblocking
MPI_Allgather collective using CORE-Direct. In 2012 IEEE International Confer-
ence on Cluster Computing (Cluster). IEEE, 477–485.

[19] A. Jocksch, N. Ohana, E. Lanti, E. Koutsaniti, V. Karakasis, and L. Villard. 2021. An
optimisation of allreduce communication in message-passing systems. Parallel
Comput. 107, 102812 (2021).

[20] K. Kandalla, A. Venkatesh, K. Hamidouche, S. Potluri, D. Bureddy, and D. K. Panda.
2013. Designing optimized MPI broadcast and allreduce for Many Integrated Core
(MIC) InfiniBand clusters. In 21st Annual IEEE Symposium on High-Performance
Interconnects (HotI). IEEE, 63–70.

[21] S. Li, T. Ben-Nun, S. D. Girolamo, D. Alistarh, and T. Hoefler. 2020. Taming
unbalanced training workloads in deep learning with partial collective operations.
In Proceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. 45–61.

[22] P. Marendić, J. Lemeire, T. Haber, D. Vučinić, and P. Schelkens. 2012. An investi-
gation into the performance of reduction algorithms under load imbalance. In
European Conference on Parallel Processing (Euro-Par). Springer, 439–450.

[23] B. S. Parsons. 2015. Accelerating MPI collective communications through hi-
erarchical algorithms with flexible inter-node communication and imbalance
awareness. Ph.D. Dissertation. Purdue University.

[24] P. Patarasuk and X. Yuan. 2008. Efficient MPI Bcast across different process
arrival patterns. In 2008 IEEE International Symposium on Parallel and Distributed
Processing (IPDPS). IEEE, 1–11.

[25] F. Petrini, S. Coll, E. Frachtenberg, and A. Hoisie. 2001. Hardware-and software-
based collective communication on the Quadrics network. In Proceedings IEEE
International Symposium on Network Computing and Applications (NCA). IEEE,
24–35.

[26] J. Pjesivac-Grbovic. 2007. Towards automatic and adaptive optimizations of MPI
collective operations. Ph.D. Dissertation. University of Tennessee.

[27] J. Proficz. 2018. Improving all-reduce collective operations for imbalanced process
arrival patterns. The Journal of Supercomputing 74, 7 (2018), 3071–3092.

[28] S. Pumma, D. Buono, F. Checconi, X. Que, and W.-C. Feng. 2020. Alleviating
load imbalance in data processing for large-scale deep learning. In 2020 20th
IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing
(CCGRID). IEEE, 262–271.

[29] Y. Qian and A. Afsahi. 2011. Process arrival pattern aware alltoall and allgather
on InfiniBand clusters. International Journal of Parallel Programming 39, 4 (2011),
473–493.

[30] R. Rabenseifner. 1999. Automatic MPI counter profiling of all users: First results
on a CRAY T3E 900-512. In Proceedings of the message passing interface developer’s
and user’s conference, Vol. 1999. 77–85.

[31] R. Rabenseifner. 2004. Optimization of collective reduction operations. In Inter-
national Conference on Computational Science. Springer, 1–9.

[32] B. Ramesh, K. K. Suresh, N. Sarkauskas, M. Bayatpour, J. M. Hashmi, H. Subramoni,
and D. K. Panda. 2020. Scalable MPI Collectives using SHARP: Large Scale
Performance Evaluation on the TACC Frontera System. In 2020 Workshop on
Exascale MPI (ExaMPI). 11–20.

[33] H. Ritzdorf and J. L. Traff. 2006. Collective operations in NEC’s high-performance
MPI libraries. In Proceedings 20th IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS). IEEE, 1–10.

[34] F. Seide and A. Agarwal. 2016. CNTK: Microsoft’s open-source deep-learning
toolkit. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 2135–2135.

[35] A. Sergeev and M. Del Balso. 2018. Horovod: fast and easy distributed deep
learning in TensorFlow. arXiv preprint arXiv:1802.05799 (2018).

[36] S. Sur, U. K. R. Bondhugula, A. Mamidala, H.-W. Jin, and D. K. Panda. 2005.
High performance RDMA based all-to-all broadcast for InfiniBand clusters. In
International Conference on High-Performance Computing (HiPC). Springer, 148–
157.

[37] Y. H. Temucin, A. Sojoodi, P. Alizadeh, and A. Afsahi. 2021. Efficient Multi-Path
NVLink/PCIe-Aware UCX based Collective Communication for Deep Learning.
In 28th Annual IEEE Symposium on High-Performance Interconnects (HotI). IEEE,
1–10.

[38] M. G. Venkata, P. Shamis, R. Sampath, R. L. Graham, and J. S. Ladd. 2013. Opti-
mizing blocking and nonblocking reduction operations for multicore systems:
Hierarchical design and implementation. In 2013 IEEE International Conference
on Cluster Computing (Cluster). IEEE, 1–8.

[39] M.-S. Wu, R. A. Kendall, and K. Wright. 2005. Optimizing collective communi-
cations on SMP clusters. In 2005 International Conference on Parallel Processing
(ICPP). IEEE, 399–407.

78

https://www.cs.toronto.edu/~kriz/cifar.html
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.mpi-forum.org
https://www.tensorflow.org/
https://doi.org/10.1007/978-3-642-33518-1_16
https://doi.org/10.1145/3392717.3392771
https://doi.org/10.1145/3392717.3392771

	Abstract
	1 Introduction
	2 Background
	2.1 MPI Collective Communication
	2.2 Process Arrival Pattern

	3 Related Work
	4 Motivation: Communication Characterization of Horovod
	4.1 Experimental Setup
	4.2 Collective Communication Characterization
	4.3 MPI_Allreduce Process Arrival Pattern

	5 Proposed PAP-aware MPI_Allreduce Algorithms
	5.1 Node-wide PAP-aware MPI_Allreduce for Small and Medium Messages
	5.2 Node-wide PAP-aware MPI_Allreduce for Large Messages
	5.3 Cluster-wide PAP-aware MPI_Allreduce

	6 Evaluation Results and Analysis
	6.1 Micro-benchmark Results
	6.2 Horovod Application Results

	7 Conclusion and Future Work
	Acknowledgments
	References

