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Abstract
Efficient communication among GPUs is crucial for achiev-
ing high performance in modern GPU-accelerated applica-
tions. This paper introduces a multi-path communication
framework within the MPI+UCX library to enhance Point-to-
Point (P2P) communication performance between intra-node
GPUs, by concurrently leveraging multiple paths, including
available NVLinks and PCIe through the host. Through exten-
sive experiments, we demonstrate significant performance
gains achieved by our approach, surpassing baseline P2P
communication methods. More specifically, in a 4-GPU node,
multi-path P2P improves UCX Put bandwidth by up to 2.85x
when utilizing the host path and 2 other GPU paths. Further-
more, we demonstrate the effectiveness of our approach in
accelerating the Jacobi iterative solver, achieving up to 1.27x
runtime speedup.

CCS Concepts: • Software and its engineering→Mes-
sage passing.

Keywords: MPI, UCX, GPU, P2P, Multi-Path Communica-
tion, NVLink, PCIe
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1 Introduction
Utilizing GPUs in High-Performance Computing (HPC) sys-
tems have become increasingly widespread in recent years,
delivering substantial speedups to distributed applications
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in various domains [1, 14]. To fully harness the compute
power of these accelerators, distributed applications should
efficiently handle the communication among GPUs. In par-
ticular, performant data transfers between intra-node GPUs
using the communication libraries like Message Passing In-
terface (MPI), the de facto standard for distributed computing
[5], is important for achieving desirable compute power [4].
Traditionally, P2P communication in GPU-accelerated

systems is driven via direct data transfers through a sin-
gle NVLink or Peripheral Component Interconnect Express
(PCIe) communication path, often becoming the communica-
tion bottleneck and leading to limited performance [12]. Al-
though several studies have been conducted to improve P2P
communication performance by splitting it across various
paths, like in the Unified Communication X (UCX) library
[10], they still lack the ability to provide concurrent data
staging through host and device [8, 12].
In our earlier work, we showcased how harnessing host-

staging data transfer could enhance P2P communication
[12, 13]. In this paper, we build upon our prior research and
extend it further. Our contributions are as follows:
• Wepropose amulti-path communication frameworkwithin
the UCX library, specifically designed to enhance P2P com-
munication between two intra-node GPUs, by leveraging
concurrent path utilization, including available NVLinks
and PCIe through the host.

• We design and implement a 2-D pipelining engine to stati-
cally scatter the communication along and across the com-
munication channels.

• We provide end users with tuning capabilities for schedul-
ing parameters, ensuring adaptability to diverse commu-
nication patterns and hardware configurations.

To evaluate the effectiveness of our approach, we conducted
several experiments on GPU-accelerated micro-benchmarks
and an application. The results highlight the importance
of concurrent path utilization, across multiple NVLinks and
PCIe paths, in accelerating GPU-to-GPU communication and
optimizing overall application performance.
The remainder of this paper is organized as follows. Sec-

tion 2 provides the necessary background for this work.
Section 3 describes the design and implementation of our
multi-path communication framework. Section 4 presents
the experimental setup, performance evaluation, and analy-
sis of the results. Section 5 provides a review of the related
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Figure 1. UCX architecture and some of its components

work. Finally, Section 6 concludes the paper, summarizing
the contributions and discussing future directions.

2 Background and Motivation
2.1 MPI and UCX
MPI is a portable message-passing standard for parallel pro-
gramming and Inter-Process Communication (IPC) in HPC
which is maintained by MPI Forum [5]. Open MPI is a popu-
lar MPI implementation which has been widely used in HPC
and AI [9]. It provides a modular architecture that allows for
the integration of various communication frameworks, such
as UCX. UCX is an open-source library that provides a com-
munication framework for distributed systems [10]. UCX
allows applications to utilize various communication pro-
tocols and hardware, including shared memory, InfiniBand,
RoCE, and more. UCX provides such applicability through
various components, some of which are depicted in Fig. 1.

One of the major components of UCX is the Unified Com-
munication Transports (UCT) layer, which consists of various
modules that provide communication facilities for different
hardware platforms. Each of these modules contains several
resources and communication objects [16], including:
• MD: The Memory Domain object facilitates memory reg-
istrations and allocations for the underlying transports.

• Iface: This module represents a communication resource
on a specific device with a specific transport, associated
with a particular worker.

• EP : Endpoint represents a connection to a remote peer.

2.2 CUDA and CUDA module in UCT
Compute Unified Device Architecture (CUDA) provides a
programming interface and tools enabling developers to har-
ness the computational power of NVIDIA GPUs [3]. Over
the past few years, distributed middleware and libraries have
been developed to support GPUs in HPC systems. Combining
UCX and Open MPI is one of the various methods to enable
GPU support in Open MPI. Some other worth mentioning
methods include NVIDIA Collective Communications Li-
brary (NCCL) [7], Unified Communication Collectives (UCC)
[15], and Open MPI built-in support for GPUs [9]. Although
this work targets CUDA and Nvidia GPUs, it is also applica-
ble to AMD, Intel GPUs, etc.

The uct_cuda module [16] consists of a base and three
other submodules: cuda_copy, cuda_ipc, and gdr_copy. W-
hile the gdr_copy module is performant for small messages,
and cuda_copy is designed for single-process environments,
we integrate our design with cuda_ipc module, as this mod-
ule is frequently used for MPI’s large messages.
Typically, data transfers with sizes larger than 64KB are

executed in a rendezvous fashion. Depending on if sender
or receiver reaches to the P2P communication first, as well
as the UCX internal configurations, put or get operation
will be executed. To execute either of these operations, the
src and dst buffers’ pointers should belong to a common
CUDA context. In other words, the communication partners
should share their CUDA IPC memory handles to transfer
data across their address spaces. This challenge is handled
by the CUDA IPC Cache.
CUDA contexts are created by the CUDA driver and are

associated with a single CUDA device. Each context belongs
to a single process, and each process, as well as each device,
can have multiple contexts. The CUDA context is like an
umbrella for the collection of CUDA resources, such as CUDA
streams, CUDA events, and memory pointers. Therefore, at
any given time, any CUDA operation, utilizing the device,
must be associated with an active CUDA context.
Traditionally, in GPU accelerated applications, the CPU

needed to coordinate GPU computation and communication
tasks explicitly, and messages between third-party devices
had to be transferred through the system’s main memory.
However, GPUDirect technologies have enabled on-node or
off-node GPUs to directly exchange data. More relevant to
this work, GPUDirect_P2P enables the same feature between
the GPUs of a single node.
NVLink is a bidirectional interconnect which consists of

sub-links for each direction. Fig. 2(a) demonstrates a typical
four-GPU node with NVLink interconnects. In this config-
uration, each pair of GPUs has two NVLink sub-links, and
the GPUs are connected to the CPU through PCIe.

2.3 Motivation
As mentioned earlier, UCX relies on a single communication
path for intra-node GPU-to-GPU data transfers. As depicted
in Fig. 2(b), if a communication over a single channel (e.g.,
GPU-0 to GPU-1) has already saturated the available band-
width, it can be split into smaller chunks and be transferred
through other available paths concurrently. This is particu-
larly important for HPC or Deep Learning (DL) applications
that utilize MPI’s P2P communication for large messages.
While this approach can theoretically improve the com-

munication bandwidth for large messages, the performance
gain is dependent on the concurrent communication pattern,
and the hardware configuration. Although, the mentioned
challenges are not trivial, the performance gain can still be
significant, considering NVLink’s ability to handle bidirec-
tional communication.
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PCIe 3.0 UPI NVLinks

Figure 2. (a) A typical four-GPU node with NVLink (two
sub-links) per GPU pair, (b) A communication between GPU-
0 and GPU-1 is split and transferred through multiple paths

3 Design
Our design should seamlessly integrate with the existing
capabilities of uct_cuda module while introducing novel
features to exploit concurrent paths for enhanced communi-
cation efficiency. Our key objectives include:
1. Multi-GPU awareness: Ability to utilize all the available

GPUs and their interconnects within UCX instances.
2. Path selection: Ability to select the most suitable paths

for the current communication.
3. Communication scheduling: Ability to schedule the

communication along the selected paths.
4. Path optimization:Optimize communication bandwidth

by increasing the overlap between concurrent data trans-
fer across multiple paths.

5. Data integrity: Ensure the data integrity by avoiding
link contention and data corruption.

6. Low overhead: The overhead of the framework should
be negligible compared to the communication time.

3.1 Framework Design and Implementation
Fig. 3 provides a simplified overview of our framework’s
architecture, illustrating the connections between the key
components. The top-level entities of our framework are
briefly described below:
• Base module: The base module is responsible for de-
tecting the available GPUs and their interconnects, and
initializing the structures and objects for each GPU, in-
cluding: streams, events,memory handles, path configs, and
path handlers.

• CUDA IPC module: The cuda_ipc module is responsi-
ble for handling the communication requests, selecting
the suitable paths, handling configurations from environ-
ment variables, and scheduling the communication along
the selected paths with the 2-D pipelining engine. The
connection between the base and cuda_ipc modules is
established through proxy entities.

Multi-Path UCT CUDA module

  Base

CUDA
  IPC

CUDA 
Copy

GDR 
Copy

 IFACE
MD

Multi-Path Iface Path Config Iface Device Iface Base

MD

MD EP

IFACE

IFACE
IPC Cache

 IFACE

Device Iface Path Config Proxy Tuning Module

Device Iface 
Proxy

EP

MD = Memory Domain
EP = Endpoint, IFACE = Interface

Multi-Path
Communication Handler

MD EPPipeline 
Engine

Figure 3. Multi-path communication framework within the
uct_cuda module, based on UCX v1.14.0
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3

Figure 4. A simplified view of 2-D pipelined communication
from GPU-0 to GPU-1 using the available NVLinks and PCIe.
Staging GPUs’ timelines are not shown for simplicity.

3.2 2-D Pipelining and Configuration Tuning
Fig. 4 demonstrates how our 2-D pipelining engine scatters
a message: first, the message is split into multiple chunks
according to the number of selected paths; then, each of those
is transferred through a different path with another level of
pipelining. The number of chunks per path varies from 1 to
16, depending on the size and the path itself. Each of the final
chunks is handled by two separate CUDA streams, one for
transferring from src to the staging device, and the other for
transferring from the staging device to the destination GPU.
The number of CUDA streams per path is equal to the number
of chunks per path. The CUDA streams are synchronized at
the end of each path to ensure that the data is received.

Configurations can be tuned through either environment
variables or topology-specific tuned parameters. In the for-
mer, the user can set the environment variables to tune the
framework’s behavior, like disabling the host path, setting
the number of paths, and setting the number of chunks for
each path. In the latter case, we have implemented a static
tuning approach that exhaustively searches for the best con-
figuration for the topology. This algorithm works based on
the number of GPUs, the number of paths, and the number
of chunks for each path. Moreover, this offline tuning does
not consider the ongoing communication on the system, and
its results are supposed to be used as an initial configuration.
Our experiments reveal that our proposed approach is

suitable for large messages (larger than 1MB), as the avail-
able bandwidth is not fully saturated for smaller sizes, and
splitting the message into multiple chunks and transferring
them concurrently will not improve the performance.
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3.3 Ensuring Data Integrity
The pipelining engine and the communication handler utilize
the synchronization and ordering semantics of CUDA Appli-
cation Programming Interface (API) to ensure the following
properties:
• Data corruption: For any direction in the topology (e.g.,
GPU-2 to GPU-3, or GPU-1 to host) only one communi-
cation should occur at any given time. This policy holds
true by using the same CUDA streams and CUDA events
for that specific direction.

• Dependency: The pipelining engine ensures that each
chunk should be received by the staging device before
relaying it to the destination GPU.

• Ordering: The communication scheduler ensures that
the chunks of a single message from each direction are
transferred before those of the next message.

• Synchronization: All the pipelines are synchronized at
the end of the communication, to ensure that the data is
transferred completely.

4 Evaluation
To assess the effectiveness and performance of our frame-
work, we conducted the assessment based on three micro-
benchmarks and one application. The micro-benchmarks in-
clude: UCX Put Bandwidth, OSU Micro-Benchmarks (OMB)
MPI Bandwidth (OMB_BW), and OMB MPI Bidirectional Band-
width test (OMB_BIBW) [2]. Also, for the application measure-
ments, we tested the Jacobi iterative solver [6].

4.1 Experimental Setup
The experiments were conducted on two different multi-
GPU node configuration from the Digital Research Alliance
of Canada clusters: Beluga and Narval, equipped with four
NVIDIA V100 and NVIDIA A100 GPUs, respectively. In
both systems, the GPU topology is full-mesh, and each GPU
pair has two NVLinks in Beluga (similar to Fig. 2) and four
NVLinks in Narval. The experiments were executed using
the UCX library v1.14.0 and Open MPI v4.1.5.

4.2 Micro-benchmark Results
4.2.1 UCX Put Bandwidth. Fig. 5 demonstrates the band-
width of UCX Put operation, using two ranks, on Beluga
and Narval clusters. The results show that the bandwidth of
Put operation is significantly improved by our framework
compared to the default UCX. With three GPU paths and
host-staging, we observe up to 2.75x and 2.85x speedup, on
Narval and Beluga, respectively. As depicted, enabling the
host path does not dramatically improve the bandwidth (up
to 15%), since the host path bandwidth is much lower than
the NVLink bandwidth on these topologies. When utilizing
one or two GPU paths, improvements from enabling the host
path are similar to using three GPU paths, therefore their
respective plots are omitted for the sake of clarity.

512KB
1MB

2MB
4MB

8MB
16MB

32MB
64MB

128MB
256MB

512MB

Message Size

20

40

60

80

100

120

140

Ba
nd

wi
dt

h 
(G

B/
s)

Default UCX
MultiPath, 2 GPU Paths,
without host path
MultiPath, 3 GPU Paths,
without host path
MultiPath, 3 GPU Paths,
with host path

512KB
1MB

2MB
4MB

8MB
16MB

32MB
64MB

128MB
256MB

512MB

Message Size

20

50

80

110

140

170

200

230

Ba
nd

wi
dt

h 
(G

B/
s)

Default UCX
MultiPath, 2 GPU Paths,
without host path
MultiPath, 3 GPU Paths,
without host path
MultiPath, 3 GPU Paths,
with host path

Figure 5. UCX Put Bandwidth comparison against default
UCX (UCT::CUDA-IPC), on Beluga (left) and Narval (right)

4.2.2 OMB Micro-benchmarks. Fig. 6 depicts OMB MPI
unidirectional and bidirectional bandwidth measurements
on Beluga and Narval nodes based on various window sizes.
The window size is the number of communications that can
be posted without waiting for the completion of the previous
ones. From Fig. 6, we can observe the following:
1. On Beluga, the results are similar to the UCX Put band-

width. However, on Narval, we observe less improvement
for a window size of one, compared to Beluga: suggesting
that four NVLinks on this system do not get saturated sim-
ilarly to the two NVLinks on Beluga (Figures 6(d) and 6(j),
compared to 6(a) and 6(g)). As expected, if we increase the
window size, the improvement becomes more significant
on Narval (Figures 6(e), 6(f), 6(k), and 6(l)).

2. On both clusters, as the window size increases, the band-
width utilization increases for 8MB - 64MB data sizes.

3. As stated earlier, utilizing the host path on Beluga and
Narval does not improve the bandwidth significantly, spe-
cially for Narval andwindow size one (Fig. 6.d). This might
be due to the larger difference between NVLink and the
host path bandwidths on Narval compared to Beluga.

4. For bidirectional bandwidth tests, enabling host staging
has an adverse effect on the performance, since the host
path’s PCIe link would become the bottleneck when used
concurrently in both directions.

We are currently investigating the reasons behind the drop
in performance for 1MB or 2MB messages. We speculate this
could be due to the algorithm/protocol change.

4.3 Jacobi Results
We evaluated the MPI version of the Jacobi iterative solver
[6], using our proposed multi-path technique. In this mea-
surement, we spawn four MPI ranks on a single node, and
each rank is responsible for one GPU. In each iteration of
the Jacobi solver, after the ranks have completed their com-
putation tasks, they exchange their data with their adjacent
ranks. A similar pattern is depicted in Fig. 7(a), which is
basically a ring. Considering the unutilized diagonal links,
and the NVLink’s bidirectional feature, 2/3 of the total avail-
able bandwidth is unused in this pattern. Therefore, we can
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Figure 6. OMB Unidirectional MPI Bandwidth (BW) and Bidirectional MPI Bandwidth (BIBW) comparison against default
UCX (UCT::CUDA-IPC), using two MPI ranks, on Beluga and Narval clusters

enable multi-path communication for all of these data ex-
changes, and select the staging GPUs in a way that there is
no contention on the NVLinks. Fig. 7(b) demonstrates how
each communication is split into two paths, and the data is
transferred concurrently through the NVLinks.
In our case, Jacobi uses the 2-D Halo Exchange pattern.

To evaluate its performance for different data sizes, we set
a constant number of elements for one of its dimensions
(8) and increase the other dimension (from 223 to 230). As
previously discussed, we have observed poor performance
for cases where the host path is enabled, therefore we only
report the results for the cases where the host path is disabled.
As depicted in Fig. 8, application runtime improvement for
cases when we have two paths per P2P communication is
considerable, and it increases as the application size increases
(up to 1.26x and 1.15x on Beluga and Narval, respectively).
Also, the results for the cases with three GPU paths are
still better than the baseline, even when there is contention
on the NVLinks (up to 1.2x and 1.08x on Beluga and Narval,
respectively). It is worth mentioning that Jacobi convergence
is not affected by our multi-path communication framework.

Figure 7. Jacobi communication pattern (a) without multi-
path communication, and (b) with multi-path communica-
tion (two paths per communication) on a four-GPU node

5 Related Work
Tatsugi and Nukada [11] propose a method to enhance the
performance of a data transfer from a GPU to host, by uti-
lizing the idle GPUs. Their framework targets single-GPU
applications running on a multi-GPU node, while our ap-
proach is designed for multi-GPU applications.

As part of our prior studies [12, 13], we enhance P2P com-
munication within the UCX library by utilizing host-staging
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Figure 8. Jacobi speedup against default UCX (UCT::CUDA-
IPC), using four MPI ranks, on Beluga and Narval clusters

multi-path communication. Comparing to our prior work,
we extend our design to support concurrent path utilization,
including both NVLinks and PCIe paths.

In [8], Nukada proposes a method that utilizes PCIe path
to accelerate MPI_Allreduce on a multi-GPU system. Al-
though their method involves collectives, they follow a sim-
ilar approach to our previous work to enhance each P2P
communication. Again, our approach utilizes both NVLinks
and PCIe paths, while their method is limited to PCIe.

6 Conclusion and Future Work
We proposed a multi-path communication framework im-
plemented within the UCX library. By leveraging available
communication channels, our 2-D pipelining engine scatters
P2P communication across both NVLink and PCIe channels,
to maximize communication bandwidth between intra-node
GPUs. We also provide end users with tuning capabilities
for scheduling parameters, ensuring adaptability to diverse
communication patterns and hardware configurations.

In our experiments, we observed up to 2.85x and 2.75x im-
provement in bandwidth tests for Beluga and Narval clusters,
respectively, when using the host path and two GPU paths.
We also observed that besides utilizing unused interconnects,
harnessing NVLink’s bidirectional features will also improve
communication performance. However, the lack of the same
feature in PCIe communication channels may lead to con-
tention and consequently, performance degradation. Finally,
we showed that our multi-path communication framework
can improve the performance of the Jacobi iterative solver
by up to 1.26x.
While our approach can theoretically improve the com-

munication bandwidth, the performance gain is dependent
on the concurrent communication pattern. A possible future
direction is to dynamically adapt the communication pattern

based on both the application’s communication pattern and
the hardware configuration.
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