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Abstract—Graphics Processing Units have become the dominant
type of accelerators for high-performance computing and artificial
intelligence. To support these systems, new communication libraries
have emerged, such as NCCL, RCCL, and NVSHMEM, providing
stream-based semantics and GPU-Initiated Communication. Some
of the best performing communication libraries are unfortunately
vendor-specific, and may use load-store semantics that have been
traditionally underused in the application community. Moreover,
the Message Passing Interface (MPI) has yet to define explicit
GPU support mechanisms, making it difficult to deploy the
message-passing communication model efficiently on GPU-based
systems. However, MPI-4.0 introduced MPI Partitioned Point-to-
Point communication, which facilitates hybrid-programming models.
For example, Partitioned Communication is designed to allow GPUs
to trigger data movement through a persistent intra- or inter-node
channel. In this work, we extend MPI Partitioned to provide Intra-
Kernel GPU-Initiated Communication and Partitioned Collectives,
augmenting MPI with techniques used in vendor specific libraries.
We evaluate our designs on a NVIDIA GH200 Grace Hopper
Superchip testbed, to understand the benefits of GPU-Initiated
communication on NVLink and InfiniBand networks. We assess
the benefits at the application layer using a Jacobi solver and
Partitioned Allreduce with Deep Learning Kernels.

I. INTRODUCTION

Graphics Processing Units (GPUs) have become a dominant
form of accelerator for high-performance computing (HPC)
systems. From the June 2024 Top500 list, 9 of the top 10
supercomputers in the world use GPU-based platforms from
vendors such as AMD, NVIDIA, and Intel [1]. As a result,
applications in many domains such as Molecular Dynamics [2],
Drug Discovery [3], and Deep Learning (DL) [4] have been
adapted to use GPUs.

The Message Passing Interface (MPI) [5] is the de-facto stan-
dard for programming HPC machines. Multiple implementations
of MPI exist, including MPICH [6], MVAPICH2 [7] and Open
MPI [8]. MPI supports Point-to-Point, Partitioned Point-to-Point,
global collectives, neighborhood collectives, and remote memory
access (RMA) communication operations. Mirroring the advances
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in system design, MPI implementations have adapted to be GPU-
Aware [9], [10]. However, this has yet to be standardized.

MPI Partitioned Point-to-Point Communication is a new
addition to the MPI-4.0 Standard added in June 2021 [5] to
better support multi-threaded and heterogeneous systems. In this
new model, the send and receive buffers of a Point-to-Point
communication are partitioned into distinct chunks which can
be addressable by individual actors that are marked ready as
they become available. These buffers are persistent and can be
repeatedly used within an application’s life cycle.

Much of the existing literature on MPI Partitioned has been
on multi-threaded CPU workloads [10]–[16]. However, with
GPUs becoming the dominant form of accelerators for large
HPC systems, it is important that MPI Partitioned and MPI as a
whole to adapt to current trends. The standardization of GPU
bindings for MPI Partitioned is an active topic of discussion
within the MPI Forum Hybrid Working Group, but no consensus
has yet been reached [17]. For example, MPI Partitioned could
allow for GPU thread, warp, or blocks to mark data as ready,
but which one is most performant is an open question.

The goal of allowing for GPU-Initatied communication is
not limited to MPI Partitioned, as there is interest in Stream
synchronous communication within MPI [18]. Moreover, GPU-
Initiated has garnered interest by other programming models
and communication API such as NVSHMEM. In this paper, we
address these issues by exploring MPI Partitioned optimizations
on GPUs while still considering designs that could be applied
elsewhere. Specifically, we make the following contributions:

1) We provide the first MPI-Native implementation of MPI
Partitioned on GPUs and discuss the challenges with
designing a portable implementation;

2) We present the first MPI Partitioned Collective schedule
design and how this can be utilized by GPUs;

3) We investigate whether data should be signaled as ready to
send by a GPU at the level of thread, warp, or block, and
discuss the benefits of partition aggregation on GPUs;

4) And we evaluate the overheads of introducing several
additional API calls designed to facilitate GPU-initiated
communication under MPI Partitioned.

II. BACKGROUND

A. Compute Unified Device Architecture (CUDA)
CUDA is a general-purpose parallel programming model that

allows users to take advantage of NVIDIA GPU parallel compute
engines. The CUDA environment allows users to program in
C++ but CUDA can be interfaced with other languages such as
C or FORTRAN. CUDA helps solve some of the challenges of
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transparently scaling applications in parallel environments. Other
GPU vendors such as AMD and Intel have their own equivalent
programming models and runtimes. However, we will focus on
NVIDIA in this paper but the general ideas are applicable to
other platforms.

One of the main components of CUDA programming are
kernels. These are similar to traditional functions in C/C++ but
they can be executed in parallel using many CUDA threads. Each
CUDA thread executes a kernel using its own thread ID. CUDA
applications concurrently transfer data and execute kernels via
the concept of streams. A stream can be thought as a First-In
First-Out (FIFO) queue of operations that will be executed in
the order they are placed in the queue. All streams or subgroups
of streams on a single device can be synchronized.

B. MPI Partitioned
1) MPI Partitioned Point-to-Point: MPI Partitioned Point-

to-Point Communication extends traditional MPI Point-to-
Point semantics by providing better cohesion with hybrid
programming models [5]. An application which uses MPI
Partitioned first initializes communication between endpoints
using MPI_Psend_init and MPI_Precv_init. This sets
up a communication channel between two processes based on
communicator, rank, tag, and the order in which they are posted.
The user also specifies how many partitions a buffer is split
into. Once the application is ready to communicate it calls
MPI_Start to notify the library.

MPI requires that a single thread execute the preceding
calls. Once MPI_Start executes, an application can enter
a parallel region which could be in the form of an OpenMP
block, POSIX thread, or a GPU kernel. The sender marks data
as ready in the parallel region by using MPI_Pready. For
example, each thread can mark a partition as ready, or multiple
threads contributing to the same partition can synchronize with
one thread that marks the partition ready. Marking data as ready
does not necessarily mean the data is sent at that moment;
the timing of when the data is actually sent is determined by
the MPI runtime. The receiver can, but is not required to, call
MPI_Parrived in a parallel region to check if a partition has
arrived.

Finally, in a single-threaded region, an application developer
can complete a partitioned transfer by calling MPI_Test or
MPI_Wait on the receiving process to check or wait for the
arrived data. Because MPI Partitioned is persistent, an application
developer could start a new transmission using the same buffer
simply by calling MPI_Start on the existing request and
then calling MPI_Pready on each partition as before. The
initialization calls are only called once during the lifetime of
the send and receive buffers.

2) GPU Support for MPI Partitioned: Currently, MPI +
CUDA programs require application developers to wait for
a kernel to complete before issuing a communication routine
such as MPI_Send. This is illustrated in Listing 1, where MPI
communication is initiated only after the kernel is executed
and the stream is synchronized. As we will see in Section III,
cudaStreamSynchronize is expensive and leaves the host

Listing 1: Host Pseudo Code for the Traditional MPI + CUDA
Model
kernel_A<<<stream>>>(sbuf);
cudaStreamSynchronize(stream);
MPI_Send(sbuf);

waiting on a CUDA kernel and unable to communicate. Moreover,
when MPI_Send is called the GPU is idle, unless a user uses
advanced overlapping techniques.

There has been significant discussion on accelerator support
in the MPI Forum Hybrid Working Group. Based in part on
this discussion, NVIDIA has developed an MPI Acccelerator
Extensions (MPI-ACX) prototype [19] that adds device bind-
ings to GPU Partitioned. Similar to MPI-ACX, we propose
MPIX_Pready, a GPU version of the existing MPI_Pready
function. This allows MPI to be called directly within a GPU
kernel and stream synchronization is not required to guarantee
communication has been completed.

However, even with a device-specific MPIX_Pready, there
exist challenges. In particular, according to the MPI standard,
initialization and start calls are non-blocking. Consequently, there
is no guarantee a receiver is ready to receive data. One solution is
to block on Pready until the receiver is initialized [10], but this
will stall the kernel, requires the GPU to handle progression, and
potentially increases the chance of deadlock [20]. An additional
challenge is that the sender could call MPI_Start a second
time to reuse a MPI Partitioned channel, but if the receiver is not
ready this would result in the receiver buffer being overwritten.

Currently, to address this issue there exists a proposal in
the MPI Forum Hybrid Working Group for an MPI extension:
MPIX_Pbuf_prepare [21]. The purpose of this proposed
API call is to provide a guarantee to the sender that the remote
buffer is ready to receive. The role of MPIX_Pbuf_prepare
is shown in Figure 1, where it is used to synchronize the
two processes. This prevents both of the issues outlined in the
previous paragraph.

An additional requirement for GPU-Initiated MPI Partitioned
is for MPIX_Pready to be callable from within a GPU kernel
[17]. One method for this is to define MPIX_Device as shown
in Listing 2. This allows MPI to have a generic execution space
specifier that the preprocessor would match to the vendor’s
implementation. For example, with AMD and NVIDIA GPUs,
MPIX_Device would be replaced with __device__. This
new MPIX_Pready call could mark data as ready or transfer
data directly within a GPU kernel.

For MPIX_Pready to mark data as ready, it is required
that the MPI_Request object be accessible by a GPU. One
solution is that an MPI library would allocate the required
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Fig. 1: A High Level Sequence Diagram Presenting GPU-Initiated
MPI Partitioned
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Listing 2: Device Pseudo Code for the Proposed GPU-Initiated
MPI Partitioned Model [19]
MPIX_Device int MPIX_Pready(int partition,

MPIX_Prequest preq);

__global__ int kernel_B(MPIX_Prequest preq,
double *sbuf)

{
int idx = threadIdx.x + blockDim.x * threadIdx.y;
/* Do Work */
MPIX_Pready(idx, preq);

}

__host__ int host_function(MPI_Request req,
double *sbuf)

{
MPI_Start(req)
MPIX_Pbuf_Prepare(req);

if (first_iteration)
{

MPIX_Prequest_create(preq, req);
}

kernel_B<<<stream>>>(preq, sbuf);
/* Do work on host */
MPI_Wait(req);

}

MPI_Request object and its substructures with unified
memory. However, this could pose challenges if a vendor
does not provide unified memory or if it is expensive to
use on a specific platform. Moreover, GPUs are generally
poor at pointer chasing. Ideally, a request would contain
only the necessary information for a GPU to conduct its
duties. This could be achieved by defining MPIX_Prequest
which would be a device specific request object for MPI
Partitioned [22]. The API call MPIX_Prequest_create
would take an MPI_Request object as an input and out-
put a MPIX_Prequest object. MPIX_Prequest_create
would have a corresponding MPIX_Prequest_free to free
the memory associated with the MPIX_Prequest object.

3) MPI Partitioned Collectives: Collective communication
is the natural extension to MPI Partitioned Point-to-Point
Communication as it helps simplify the movement of data
between groups of processes [23]. MPI Partitioned Collectives
follow the same general control flow as Point-to-Point but has
different initialization functions, e.g. MPIX_Pbcast_init,
MPIX_Pallreduce_init, etc. These correspond to the
equivalent MPI_Bcast and MPI_Allreduce communica-
tion patterns. During initialization time, as we have the message
size, communicator size, and partition count, we can initialize the
resource required to execute a specific collective algorithm. The
behavior of MPIX_Pbuf_prepare also changes slightly as
we now synchronize the processes associated with the collective
rather than just two ranks.

C. Unified Communication X (UCX)

UCX is a communication framework that abstracts many
communication primitives to effectively utilize a variety of
hardware [24]. The UCP API of UCX implements high-level
protocols that are used by other communication libraries such
as MPI. UCP supports Remote Memory Access (RMA), active
messages, and tag-matching operations, among others. In this
paper, we use the UCP RMA API for communication.

To use the UCP API, we must create a UCP Worker
which represents a communication context that encapsulates
communication resource and a progression engine. A Worker
object abstracts details regarding the hardware including the
network interface, network port, etc. A Worker also encapsulates
one or many Endpoints, which are used to address a remote
Worker (i.e., the target of an initiator). UCP communication
routines, such as ucp_put_nbx, use the endpoint address
to put data from source to the correct target. Details on how
UCX resources are mapped to MPI Partitioned will be further
discussed in Section IV-A.

Currently, UCX supports buffers in GPU Global memory,
however, it lacks any support for GPU-Initiated communication.
There is currently no method to initiate communication from
a GPU kernel or to setup a channel and trigger a data transfer.
The lack of support is not limited to UCX; libfabric defines a
FI_XPU_TRIGGER flag but it is not implemented. A recent
survey paper discusses these issues in greater depth [18]. These
limitations result in difficulty in providing a GPU-Initiated MPI
library. We address this in Section IV-A by proposing designs
for intra- and inter-node data transfers.

III. MOTIVATION

It is important for users to understand the costs involved
in CUDA-based applications. Figure 2 shows the cost of
cudaStreamSynchronize, as well as the cost of launch-
ing a simple vector addition CUDA kernel and synchro-
nization (see section V for system details). The cost of
cudaStreamSynchronize is consistently 7.8 ± 0.1µs
regardless of kernel size. For smaller kernels (grid sizes up to
256) the synchronization cost is anywhere between 71.6-78.9% of
the total time to execute a kernel. This is a significant overhead
to endure when sending data after a kernel has completed.
Synchronization is less impactful for larger kernels, for example,
a kernel with 128K grids, only 0.8% of its total execution time
is spent synchronizing. However, this can also be thought of as
the CPU being idle for 99.2% of the time the kernel is executing.
These lost CPU cycles or computation/communication overlap
potential are shown in the gray hashed area in Figure 2. It can
cost anywhere between 2.0µs and 933.4µs with the kernel sizes
we evaluated. These lost resources could be better utilized in CPU
compute, progressing communication, or even I/O to prepare
data for the GPU. Therefore, it is highly desirable to avoid
calling cudaStreamSynchronize during an application’s
execution.

Communication libraries providing GPU support are growing
evermore important with the growth in the popularity of GPU
systems. This has resulted in numerous GPU communication
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Fig. 2: The cost of cudaStreamSynchronize and the cost
of a kernel launch and synchronization for different grid sizes
with block size of 1024. The kernel is computing a vector
addition C = A+B
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libraries providing stream-based semantics and GPU-Initiated
communication such as RCCL, NCCL, NVSHMEM, etc. [25]–
[27]. However, it is important to have a vendor-neutral high
performance communication library to ease widespread compati-
bility of important applications and to support the large number
of existing applications currently in production use. In MPI-4.0,
MPI Partitioned Point-to-Point communication was introduced to
allow support with hybrid programming models. As discussed in
Section II-B2, GPU-Initiated MPI Partitioned could be a viable
programming model for GPUs because it allows for better overlap
between host and device code and avoids the costs associated
with calling cudaStreamSynchronize. This model allows
an application to reduce synchronization overheads for small
kernels and provide overlap for large kernels.

IV. DESIGN

Our design consists of a UCX-based MPI Partitioned Point-
to-Point library which provides GPU-Initiated communication as
discussed in Section IV-A. Partitioned Collectives are described
in Section IV-B. Our Partitioned Collectives are built upon our
Point-to-Point design.

A. UCX-Based MPI Partitioned Point-to-Point
The Modular Component Architecture (MCA) is used by Open

MPI to provide performance and compatibility to a wide variety
of networks and memory types [28]. Currently, both RMA and
Point-to-Point communication have a UCX component, however,
Partitioned Communication lacks a UCX component to optimize
this interface. In this paper, we propose a new Partitioned UCX
component for Open MPI with extensions for GPU-Initiated
communication.

This will reflect the high-level design in Figure 1 where
the MPI_{Psend, Precv}_init are used to begin ini-
tializing our communication resources. Then MPI_Start is
used to notify the MPI library that we are beginning our
communication epoch. MPIX_Pbuf_Prepare is used to
guarantee our communication resources are initialized. On
our first communication epoch MPIX_Prequest_create
is called to move communication resource to device memory.
Then our GPU kernel is launched where MPIX_Pready is
called to mark our data as ready. Finally, we wait for our
communication to complete with MPI_Wait. These steps will
be explained in further detail below.

1) MPI {Psend, Precv} init: On the first call into the MPI
Partitioned API, these initialization routines create a UCP context.
Each process also creates its own UCP worker and obtains a
worker address. The sender pre-populates the desired parameters
(ucp_request_param_t) for the ucp_put_nbx opera-
tion as we know the data size, the number of partitions, and
our destination. The sender also packs the relevant information
such as the tag, rank, and communicator which is used for
matching as well as the number of partitions, data size, worker
address, etc. into a ‘setup t’ object that is sent to the receiver
in a non-blocking fashion. The receiver posts a corresponding
receive operation. This is shown with 1 in Figure 1.

2) MPI Start, MPIX Pbuf prepare: MPI_Start simply
marks the requests as pending and sets the internal flags
to their default state. Thus far, there is no guarantee that
progress has occurred as per the MPI standard. The initial
call to MPIX_Pbuf_prepare is required to guarantee that

the receiver is ready. In the Progression Engine, the receiver
checks for the ‘setup t’ object, once it is received it unpacks
the data. Then we register the receive buffer and the internal
flags used for the partition status using ucp_mem_map and
ucp_rkey_pack. During the data transfer phase, the sender
will write to the partition status flags to notify the receiver that
communication for that partition has completed. Then it creates
a ‘setup t‘ object in response with the same parameters as
described in the initialization routines as well as the remote key
and remote address. This provides the necessary information for
the sender to be able to use RMA operations. Simultaneously, the
sender waits for the setup object response. Using the response,
it creates the relevant endpoints if they do not already exist and
unpacks the memory keys. After these steps are completed, the
sender can put data into the receiver. The subsequent calls to
MPIX_Pbuf_prepare are much simpler as the receiver sends
a ‘ready-to-receive’ signal and the sender waits for that signal.
No additional setup information transferred or initialization is
conducted. These steps are labeled as 2 in Figure 1.

3) MPIX Prequest {create, free}: These API calls are
required for specifically GPU-Initiated MPI Partitioned. We
allocate an MPIX_Prequest object in GPU global memory
that contains the minimal amount of information required by
the device for communication. This information includes the
type of copy mechanism (intra-node Kernel Copy, intra- and
inter-node Progression Engine copy), as well as a threshold
parameter specifying the number of CUDA threads that will be
aggregated into a single data transfer. The request also contains
a list of counters which are incremented until the threshold
value is reached. The threshold and counters enable the various
thread/warp/block partition aggregation schemes explored below.
For progression, a set of flags is created in pinned host memory
which are accessible by the device. These parameters are first
created in a host buffer then copied to the GPU once populated
as shown by 3 in Figure 1. MPIX_Prequest_free frees
the memory location in GPU global memory and frees the pinned
host memory, if applicable.

4) MPI Pready, MPI Parrived, MPIX Pready,
MPIX Parrived: These API calls have host and device
bindings. Here we first discuss the former and then describe
how the device bindings are built upon them. The host bindings
are used by the Progression Engine internally for the partitioned
collectives as shown in Line 25 of Algorithm 2.

The host’s call to MPI_Pready executes ucp_put_nbx
to send the data associated with that partition. This op-
eration uses the ucp_request_param_t previously pro-
vided by MPI_Psend_init. Attached to the callback of
the put operation is another ucp_put_nbx call which
marks a partition as received on the receiver side. This is
required so that MPI_Parrived can provide fine-grained
information on partition arrival. This additional control sig-
nal is required because UCX does not currently provide a
put operation that generates a receive side completion (cf.,
IBV_WR_RDMA_WRITE_WITH_IMM [10]).

For the device bindings, we have two copy mechanisms:
the Progression Engine and Kernel Copy approaches. For the
Progression Engine approach, a CUDA thread updates a flag
in host memory to notify the Progression Engine that an
MPIX_Pready call is pending. Upon detecting this notification,
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the MPI Progression Engine issues an MPI_Pready on the
host, as described in the previous paragraph. This mechanism is
similar to that proposed in MPI-ACX [19].

The number of threads within a CUDA kernel can be large
(e.g., a single block can have up to 1024 threads), and having a
large number of threads write into host memory can be quite
costly. Therefore, we implement aggregation at the thread, warp,
and block-level with specific bindings for the Progression Engine
approach to understand if there are any benefits of aggregating
partitions on GPUs. To evaluate thread-level bindings, we
created MPIX_Pready_thread where each thread updates
flags in host memory. This provides a baseline as well as
allowing us to understand how the approach used in MPI-ACX
[19] applies in this context. For our evaluation of warp-level
bindings, we implemented MPIX_Pready_warp which uses
__syncwarp() to ensure that when all warp-level memory
operations have been completed, the 0th thread writes the
completion notification into host memory. We use a similar
approach at the block-level with MPIX_Pready_block,
which uses __syncthreads() to coordinate within a block.
In addition to block-level bindings, we have counters in GPU
global memory that we atomically increment until a threshold is
hit, before writing into host memory. This allows the aggregation
of multiple blocks. As stated earlier, these counters are created
in MPIX_Prequest_create.

For the Kernel Copy approach, data is transferred di-
rectly from source to destination via NVLink within the
kernel without involving the host by using an assignment
statement. This is shown with 4.a in Figure 1. To execute
this transfer, we require an address mapped to the physical
address of the remote GPU. Currently, UCX exposes this
feature only to CPUs via the ucp_rkey_ptr API call. To
expose this feature for GPUs we modify UCX’s IPC transport
layer (specifically, uct_cuda_ipc_rkey_ptr), upon which
ucp_rkey_ptr relies. We use cuIpcOpenMemHandle to
open a memory handle from the remote process to expose
the mapped address with the appropriate memory offsets. The
same could be implemented for AMD GPUs using equivalent
ROCm API calls. The target memory address obtained through
ucp_rkey_ptr is placed in the MPIX_Prequest object
during MPIX_Prequest_create.

We must also send a control signal to the host 4.b so that it
can issue a completion to the receiver 5 . After the kernel has
completed its transfer we increment the counters in GPU global
memory until all threads have transferred data. Then we mark
partitions as ready and fall back to the host MPIX_Pready
for our completion signal.

For MPI_Parrived’s host binding we simply poll on the
receive-side completion flags. The device version polls a flag in
GPU global memory as the cost of accessing global memory
is much lower than host memory. However, as our receive-side
completion flags are always populated in host memory, we issue
a memory copy to the device in MPI_Wait as partitions arrive.

5) MPI Wait: Finally, when MPI_Wait is called, the sender
progresses any outstanding puts to ensure the callbacks are sent,
and the receiver counts the arrived flags until it matches the
number of partitions. Currently we only have a single thread
which progresses partitions.

B. MPI Partitioned Collective

Partitioned Collectives are implemented using the Point-to-
Point library described in the previous section. In this section, a
user partition is a partition that a user will see when using a
collective. A transport partition is a partition our collective
uses with regards to our Point-to-Point layer. The two can differ
due to the aggregation of multiple user partitions into a single
transport partition, for example.

1) MPIX P<collective> init: Similar to the Point-to-
Point API, the current MPI Partitioned Collective propos-
als have an initialization function for each collective (e.g.,
MPI_Bcast, MPI_Allreduce, etc.). In this paper, we
generalize these collective initialization calls and refer to
them as MPIX_P<collective>_init. Generalization of
Partitioned Collectives are incredibly important to consider as
the current proposals have at least 21 collectives that must be
implemented by MPI libraries [23]. As this is quite burdensome
for MPI developers, we take inspiration from MPI Neighborhood
Collectives and create a schedule for arbitrary communication
patterns [29]. Although our schedule is designed to be generic,
we will focus on a partitioned allreduce operation since we
investigate DL kernels in Section VI-D2.

During initialization, we allocate a request object, construct a
schedule (S) attached to the request, and add the request to a
queue used to track active requests to progress. The schedule
comprises a series of steps S = {S0, · · · , Sk} that are executed.
While a single schedule is created, each partition independently
executes that schedule and stores its current state.

Each step is a tuple Si = (I,R,⊕, O,A) including a set of
incoming neighbors I = {I0, · · · , In}, the MPI_Pready offset
R, an operation ⊕ that must be executed during that step, outgo-
ing neighbors O = {O0, · · · , On}, and the MPI_Parrived
offset A. The ⊕ corresponds to the MPI_Op associated with
a collective or a NOP. For example, an MPIX_Pbcast using
a binary-tree algorithm will consist of only NOPs, but an
MPI_Allreduce using a Ring-based reduce-scatter-allgather
algorithm will consist of an MPI_Op for the first P − 1 steps
and then a NOP for the remaining P − 1 steps.

Algorithm 1 shows the schedule creation for a Ring-based
reduce-scatter-allgather algorithm. For a given rank r, I is the
rank preceding r in the Ring, and O is the rank following r.
During the schedule construction, r calls MPI_Psend_init,
MPI_Precv_init on its outgoing and incoming neighbors,
respectively. Then in lines four and five, R and A offsets are

Algorithm 1: MPIX_Pallreduce_init schedule
creation for a Ring-Based RSA algorithm

1 for i← 0 to 2(P − 1) do
2 I ← (rank− 1) mod P
3 O ← (rank + 1) mod P
4 R← (rank + 2P − i) mod P
5 A← (rank + 2P − i− 1) mod P
6 if i < (P − 1) then ⊕ ←MPI Op ;
7 else ⊕ ← NOP ;
8 Si ← (I,R,⊕, O,A)
9 S← Si

10 end
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calculated. Creating a different offset for each step allows us to
pipeline the Ring algorithm using partitions. In Lines 6 and 7,
⊕ is set to true or false based on whether we are in the reduce
scatter or allgather portion of the collective.

2) MPI Pready, MPI Parrived: We first calculate the trans-
port partition index using the equation: transport partition =
(user partition ∗ user partition size)+R. The R value is associ-
ated with the step in the schedule as seen in Algorithm 1. Using
the calculated transport partition MPI_Pready is called as
described in Section IV-A4. For MPI_Parrived, we simply
read a flag in memory to see if the allreduce has been completed.

3) MPI Wait: Much of the Partitioned Collective is executed
in the Progression Engine as there are no progress guarantees for
calls other than MPIX_Pbuf_prepare. Algorithm 2 shows
how partitions are progressed in MPI_Wait.. The algorithm
iterates over the number of partitions in the collective, as each
partition has its own state. This allows for each partition to
progress to the next step of the collective independently. We first
check that we have not exceeded the last step in our collective
in Line 4 to minimize our progression overhead. Then we check
if the number of partitions that have arrived is the equal to the
number of incoming neighbors in Line 5. If this condition is
satisfied it would signify that all relevant data has arrived in
the current step of the algorithm for this partition’s state. If the
data is incomplete, we iterate over our incoming neighbors in

Algorithm 2: MPI_Wait Progression of a Partitioned
Collective Schedule

1 for part← 0 to num partitions do
2 state = states[part]
3 S ← state.step
4 if S > Sk then continue ;
5 if state.parrived complete ̸= |I| then
6 for Ix ∈ I do
7 MPI_Parrived(flag)
8 if flag = true then
9 state.parrived complete++

10 if ⊕ ̸= NOP then reduceData() ;
11 end
12 end
13 end
14 if state.parrived complete = |I| and
15 state.pready complete = |O|
16 then
17 S ← S(i+1)

18 state.parrived complete ← 0
19 state.pready complete ← 0
20 end
21 if S ̸= S0 and S! = Sk and
22 state.pready complete = 0
23 then
24 for Ox ∈ O do
25 MPI_Pready(...)
26 state.pready complete++
27 end
28 end
29 end

Lines 6-12. In this loop we individually check if the partition has
arrived for that neighbor, and reduce that data if applicable. The
algorithm is presented at a high level, and the implementation
details are omitted. In our particular implementation, we ensure
that the reduce operation is only executed once for each incoming
neighbor. Then in Line 14, we check if the number of partitions
that have arrived is equal to the number of incoming neighbors
and if the number of partitions marked as ready is equal to the
number of outgoing neighbors. If evaluated to be true, the current
step in the algorithm is complete. Therefore, we would move
to the next step (Si+1) in our Partitioned Collective schedule,
and reset our counters to zero. In Line 21, we check if any
MPI_Pready calls have been made. We verify that the state
is not S0 since the first MPI_Pready should be called by the
application programmer. We also check that we are kth step
(reaching the maximum number of steps in our algorithm) to
ensure we do not transfer any additional data unnecessarily.

V. EXPERIMENTAL PLATFORM

Our evaluation is based on a two-node NVIDIA GH200 Grace
Hopper Superchip testbed. Each NVIDIA Grace CPU has 72
ARM Neoverse V2 CPU cores with 120GB of LPDDR5X
memory [30]. This is combined with an NVIDIA Hopper
GPU that has 96GB of HBM3 memory. These two elements
are connected via the NVIDIA NVLink-C2C, which provides
a 900GB/s total bandwidth chip-to-chip interconnect. Each
node has four NVIDIA GH200 Grace Hopper Superchips. The
NVIDIA Hopper GPUs are connected with 18 NVLink 4 links per
device, resulting in an aggregate bandwidth of 900GB/s. Between
each GPU pair, there are 6 NVLink connections resulting in a
total uni-directional bandwidth of 150GB/s to each neighbor.
Each node is composed of four Mellanox ConnectX-7 network
cards (400Gbit). The software environment is NVHPC version
23.11. The GNU/Linux distribution is Ubuntu 22.04.2 LTS, with
GCC version 12.3.0, UCX master branch (commit bc85b70e6,
ca. March 19th, 2024), and Open MPI version v5.0.1rc1.

The GH200 platform differs from many other GPU systems
in production today. However, the conclusions drawn from
Section VI are still applicable to most other systems. For example,
most NVIDIA GPU-based systems have some form of NVLink
capability so our comparison for different copy methods would
easily apply to different contexts. The same would be true for
an AMD system as they have their own intra-node network,
Infinity Fabric.

VI. EXPERIMENTAL RESULTS

In our tests, each CUDA thread works on 8 bytes of data.
For example, for a kernel with 1024 CUDA threads, where
each contributes 8B to an allreduce operation, the total data size
is 8KiB. Goodput is used as an evaluation metric as we want
to understand the amount of useful work the GPU can do per
unit of time. Goodput is defined as the total amount of data
being processed divided the total execution time (computation
time + communication time). Goodput is a better metric than
bandwidth for this situation as it includes the cost of computation
and communication, and their overlap, rather than pure network
bandwidth which would be limited by hardware. Unless stated
otherwise, we use a vector addition C = A+B kernel as our
workload for our CUDA Kernels.
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We evaluate our design at the Point-to-Point, collective and
application-kernel layer. For the send/receive and traditional
MPI_Allreduce data points we measure the time to execute
computation, synchronization, and communication as shown in
Listing 1, then we calculate our Goodput. For our partitioned
test we measure time to execute the equivalent of Kernel_B
and MPI_Wait in Listing 2, then use this time to calculate
Goodput.

A. MPI Partitioned Point-to-Point
1) Device-Side Partition Aggregation: As noted in Section IV,

it is an open question whether there are benefits to aggregating
thread-level partitions into warp or block-level transport partitions.
In Figure 3, we evaluate the different aggregation strategies of
MPIX_Pready calls (thread-level (no aggregation), warp-level,
and block-level) for intra-node GPU-to-GPU communication,
from a single thread to the maximum block size for a GH200
(1024 threads). For a single thread, the cost is the same (within
error) for all three methods. This is also true for warp-level
and block-level aggregation up to 32 threads. In this block size
range, we have yet to fully occupy a warp. Above 32 threads, is
where we see the discrepancy grow between the warp-level and
block-level aggregation of our partitions. For a fully occupied
block, a block-level MPIX_Pready call costs 271.5x less than
at the thread-level and 9.4x less than the warp-level call. This is
due to the thread-level MPIX_Pready requiring 1024 writes
to memory and the warp-level requiring 32 writes, compared to
a single write for the block-level.

From this test, it is abundantly clear that there is a large perfor-
mance penalty for the finer-grained MPIX_Pready_thread
and MPIX_Pready_warp calls. That said, we believe that
each GPU thread should call MPIX_Pready to simplify the
programming model and that MPI should aggregate to the block-
level internally. We also investigated how to aggregate multiple
blocks, and those results showed that a single transport partition
was what provided the highest Goodput. Although this was
sufficient for this initial test, we will revisit this throughout our
evaluation.

2) Comparison with Different Communication Models: In
Section IV, we discussed two copy mechanisms for intra-node
copies, using a copy kernel and issuing a ucp_put_nbx via
the MPI Progression Engine. In Figure 4, we evaluate the two
copy mechanisms and compare them to the traditional model,
for intra-node communication. The maximum uni-directional
NVLink bandwidth is provided as a reference for the upper
bound of our Goodput value.

Using MPI Partitioned with the Progression Engine approach
outperforms traditional for all kernel sizes up to a grid size of
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Fig. 4: Results for two GH200 on a single node. Comparison
of MPIX_Pready copying data within a CUDA Kernel and
MPIX_Pready writing to a flag in memory where the MPI Pro-
gression Engine issues the copy, and using MPI_Send/Recv

2K. For larger grid sizes, the speedup is around 1.0x, thus there
is no benefit to this approach but there is also no performance
penalty. For smaller grid sizes we observe a maximum of 1.28x
improvement in Goodput. MPI Partitioned using the Kernel Copy
design outperforms both the Progression Engine design as well
as the traditional communication model for all kernel sizes. For
large kernels, such as 32K grids, we observe a 1.06x speedup
compared to the traditional communication model. The impact
is much larger for smaller kernels as we observe up to 2.34x
improvement in our Goodput.

In Figure 5, we compare GPU-Initiated MPI Partitioned to
traditional MPI Send/Recv for inter-node communication. The
benefits of GPU-Initiated MPI Partitioned are more significant
for inter-node communication. Similar to the intra-node case, the
largest performance improvement is seen for smaller kernels. For
one grid we observe a 2.80x improvement in Goodput. For the
largest grid we evaluated, we obtained a 1.17x higher Goodput.
Our performance improvements are better for the inter-node case
than the intra-node case as inter-node communication cost is
much higher, so the overlapping is more impactful. We found
for large kernels that aggregating into two transport partitions
provided the best performance.

For both intra- and inter-node scenarios we observed better
performance for smaller kernels. This is expected, as in Figure 2
we saw that the synchronization cost of the kernel would be up
to 78.9% of the total time to execute a kernel. GPU-Initiated MPI
Partitioned avoids this synchronization cost. Similarly this is why
the performance improvement for larger kernels is significantly
lower as we are not bound by synchronization.

One important consideration is that in the MPI standard,
MPI_Pready is described as ‘a send-side call that indicates that
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Fig. 5: Results for two GH200 on two nodes. Comparison of
MPIX_Pready writing to a flag in memory where the MPI Pro-
gression Engine issues the copy, and using MPI_Send/Recv
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a given partition is ready to be transferred’ [5]. Our implemen-
tation for the inter-node and the intra-node Progression Engine
approach adheres to this specification. For the intra-node case
where we use a Kernel Copy, we are in a gray area as we conduct
the data transfer within MPIX_Pready. However, the standard
does not explicitly state that this behavior cannot occur. Therefore,
if MPI were to adopt MPIX_Device MPIX_Pready this
should be clarified. This becomes more important with Partitioned
Collectives, as discussed in Section VI-B.

B. MPI Partitioned Collectives
In Figure 6 and Figure 7, we evaluate our Partitioned Collective

approach as applied to allreduce, and compare it to traditional
approaches as well as NCCL. The Ring algorithm is used in
all cases, as this algorithm is important in Machine Learning
contexts, and our goal is to observe the differences between
libraries/interfaces rather than algorithm design. Since the Ring
algorithm is used to maximize bandwidth for large messages, we
evaluate large kernel grid sizes. For multi-node experiments ranks
[0-3] and [4-7] are on the same nodes so that each processes’
neighbor is located optimally for all communication libraries.

For both the single-node and multi-node results, we see a
significant improvement in time required to execute a kernel
and communicate, when comparing MPI_Allreduce to the
partitioned allreduce. The time required for a partitioned allreduce
is multiple orders of magnitudes lower, a result that stems from
moving the communication initiation and the computation aspect
of our collective to the device.

When comparing the partitioned allreduce to NCCL, NCCL
does provide better performance for a single and two nodes. For
a kernel with 1K grid size, there is around 226.1µs between
the two libraries when executing the kernel and communicating.
This stems from our partitioned allreduce only marking data
as ready using MPIX_Pready. Specifically, in Line 10 in
Algorithm 2, there is an operation to reduce our data. If the
buffers for this collective were in host memory, this would
not cause any issues. However, as our buffers are in GPU
memory we are required to launch an additional kernel for our
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Fig. 7: Allreduce results for eight GH200s

reduction operation. This reduction is required to be completed
before we move on to the next step of the algorithm to have
numerically correct data. This results in the requirement of calling
cudaStreamSynchronize within the collective itself. How-
ever, this is still better than the the traditional MPI_Allreduce
as we remove cudaStreamSynchronize application code
to provide a better programming model for the user. This would
also apply to the partitioned variants of Reduce, ReduceScatter,
Scan, and ExScan,/ but this would not be an issue for collectives
such as Bcast or Gather which do not have a computation
component.

As discussed, the current proposed MPIX_Device
MPIX_Pready device bindings have some limitations such as
only being required to mark data as ready. We suggest that this
should be relaxed to allow for computation and communication
within the call as that would allow the execution of an entire
allreduce operation within a kernel. This is important for the
current GH200 and will become even more performance-critical
for the GB200 GPUs as over 500 GPUs can be connected via
NVLink. Moreover, this is not limited to systems with NVIDIA
NVLink, as there are many intra-node interconnects this could
apply to such as AMD’s Infinity FabricTM [31], or Cerio’s
Multi-row scale PCIe networks [32]. An alternative would be
to introduce something like collective specific device calls to
separate the initialization and execution of a collective, e.g.
MPIX_Device MPI_Pallreduce. Either of these options
should be strongly considered to reduce the performance
differential between MPI and NCCL to ensure that MPI stays
relevant for decades to come.

C. Overheads
Communication costs are incredibly important to the viability

of GPU-Initiated MPI Partitioned. Table I summarizes overheads
associated with those parts of MPI Partitioned that we have not
yet covered. We place timer around the API calls listed in the
table, and ran the control flow for MPI Partitioned Point-to-Point
and Collectives for 100 iterations. Average values of 10 samples
with standard deviations are reported in Table I. The API calls
fall into three categories: non-blocking initialization, blocking
initialization, and synchronization.

Non-blocking initialization includes MPI_Psend_init,
MPI_Precv_init, and MPIX_Pallreduce_init. The
overheads of these calls are mostly hidden as any required pro-
gression is deferred until the first time MPIX_Pbuf_prepare
is called. MPI_PSend/Recv_init has a cost of 17.2µs
and MPIX_Pallreduce_init has a cost of 62.3µs. The
collective initialization has a higher cost than the Point-to-
Point initialization because collective initialization requires
multiple Point-to-Point initializations as well as creating the
communication schedule.
MPIX_Prequest_create is a blocking initialization call

that moves the relevant data structures to the device. This

TABLE I: Overheads for Different MPI Calls

MPI Call Overhead
MPI_PSend/Recv_init 17.2± 10.2µs
MPIX_Pallreduce_init 62.3± 6.2µs
MPIX_Prequest_create 110.7± 37.8µs
MPIX_Pbuf_prepare 193.4µs first, 3.4± 1.4µs avg.
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is required to be blocking to ensure that when the first
MPIX_Pready is called its corresponding MPIX_Prequest
is valid. This call has an overhead of 110.7µs which is mostly
memory registration of flags and a memory copy from host to
device.

The prior calls are only called once during an application’s
life. The call MPIX_Pbuf_prepare differs in that it is used
to synchronize processes to guarantee remote buffer readiness
and is called multiple times during an application’s life cycle.
The first call will incur a significantly higher overhead than
subsequent calls, therefore, two values are given in Table I.
The initial call has an overhead of 193.4µs, which includes
the overheads of initializing the MCA module and any prior
requests. The cost of subsequent calls is 3.4µs, averaged over
100 iterations. This is important to consider as after the initial
call only synchronization is performed.

D. Application-Kernel Results
In this section we evaluate two application-kernels, a Jacobi

solver and our DL Kernel. The Jacobi solver, evaluates our Point-
to-Point design within the context of an application-kernel, and
the DL Kernel is designed to benchmark allreduce performance.
The data presented in this section differs from prior evaluations
as measurements now include the initialization overheads as well
as communication, rather than assessing them independently.

1) Jacobi Solver: For this evaluation, we modified the MPI +
CUDA example from NVIDIA [33] to use MPI Partitioned Com-
munication. In this implementation, the problem is decomposed
across multiple GPUs, and processes on different GPUs engage
in a Point-to-Point halo exchange communication pattern while
calculating a solution. The problem size must be a multiple of
the number of GPUs that are used. For example, on four GPUs
it must be a multiple 2x2 and on eight it is a multiple of 4x2.
For these experiments, the multiplier is varied from 1 to 32 in
powers of 2.

Results for one and two nodes are shown In Figures 8 and 9,
respectively. The best performance improvement (in terms of
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GFLOP/s) on a single node is modest at 1.06x but for our
two-node test, we obtain a maximum speedup of 1.30x. MPI
Partitioned is also most impactful for smaller kernel sizes and
the performance eventually plateaus. Both of these observations
are consistent with what we saw in Section VI-A2, where we
see better performance for multi-node results as well as for
smaller kernels.

2) Data Parallelism Deep Learning Kernel: In this section,
we evaluate a common kernel and communication pattern used
in DL. Gradient descent is an optimization algorithm frequently
used in deep learning to minimize a cost function. Roughly
speaking, in data parallel training, each GPU receives a copy of
the model, and trains on a different subset of the total training
data. Periodically, the parameters of the copies are synchronized
by exchanging gradients using an allreduce operation.

For these tests, we evaluate a CUDA-based Binary Cross-
Entropy kernel from [34] in conjunction with a traditional
MPI_Allreduce operation, a partitioned allreduce, and a
ncclAllreduce. For the partitioned allreduce, the cost of
MPI_Start and MPIX_Pbuf_prepare are included in
our measurement as this would be present in a training loop.
The results are shown in Figure 10 and Figure 11. There
is a significant improvement over MPI_Allreduce when
compared to the Partitioned Collective. However, NCCL still
outperforms due to the same reasons as stated in Section VI-B,
as the application-kernel is heavily dependent on the collective
operation.

VII. RELATED WORK

A. MPI Partitioned
MPI Point-to-Point communication was initially introduced

in [11], [12], [35] before being adopted into the MPI 4.0
standard. Temuçin et al. [16] developed a set of MPI Partitioned
benchmarks for MPI developers that includes halo exchange
patterns. Gillis et al. [36] and Schonbein et al. [37] each provide
models for investigating the potential benefits of using MPI
Partitioned, allowing for variation in buffer size, number of
partitions, etc. The model given in [37] was used by Temuçin et
al. [10] to dynamically optimize MPI Partitioned via aggregation.
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In addition, [10] presented the first optimization of MPI
Partitioned for specific hardware using InfiniBand Verbs. Dosanjh
et al. [14] compare a an implementation of MPI Partitioned
using MPI persistent send/receive to one using RMA. They
found that an RMA implementation provides some additional
performance benefits compared to the persistent implementation.
MPI Advance [38] includes a Partitioned Communication library
built on persistent communications as part of its collection of
optimizing libraries on top of MPI. To our knowledge there is
only a single peer reviewed paper on MPI Partitioned Collectives
[23]. In that work they proposed the semantics on which MPI
Partitioned Collectives should follow.

B. Accelerator-Aware Partitioned Communication
The previously cited works focus on MPI Partitioned using

CPU buffers. To our knowledge, the single published work on
MPI Partitioned on accelerators (FPGAs) is Christgau et al.
[39]. In that work, the authors developed an MPI Partitioned
library for FPGAs, observing that there are many limitations on
obtaining good performance with current FPGA hardware when
compared to MPI Send/Recv. The MPI Accelerator Extensions
Prototype by NVIDIA [19] provides a proposed interface for
GPU-initiated Partitioned communication, but does not provide
any optimizations. The lack of work on accelerators underscores
the need for research on MPI Partitioned in this area as most of
the world’s top supercomputers use GPUs.

C. GPU-Initiated Communication
The concept of GPU-Initiated communication has been around

for a long time. Stuart et al. [40] proposed an MPI-like library
where communication could be initiated from the GPU using
a CPU helper thread to orchestrate the data transfer. Miyoshi
et al. [41] proposed making MPI calls directly within GPU
kernels. Their method did not require an additional helper thread
but rather that the kernel would be paused, communication
would occur using the host, then the GPU kernel would resume
execution. This implementation requires GPU kernels to be
completely synchronous with respect to the host which has
obvious disadvantages. They found that their proposal improved
GPU programmability with MPI codes but their performance
did not scale. Oden et al. [42] implemented InfiniBand verbs
on GPUs. This work differed from earlier work insofar as
the GPU can control communication by directly accessing the
NIC. However, the host is still involved for initialization of
the NIC since many system calls are made during that phase.
Network resources such as the doorbell register or queue pairs
(QPs)s are mapped to the GPU address space to provide direct
access to the device. Despite this novel approach, using a
host-assisted method performed significantly better for small
messages, and performance gains for large messages were
fairly small. It was noted that these performance issues were
largely due to GPUs being poor with control, the need to
minimize PCIe transfers to the NIC, and that NIC hardware
needs to be improved. Agostini et al. [43], compared initiating
communication on kernel boundaries and within a kernel. They
found that controlling communication from inside a kernel
provided the lowest ping-pong latency. Initiating communication
on the stream outperformed a synchronous model but not as
good as the intra-kernel method. For a 2D halo exchange, kernel

initiated communication worked better for smaller messages but
stream initiated communication outperforms for larger messages.
NVSHMEM [44] also provides InfiniBand GPU Direct Async
transport. Practically speaking, allowing GPUs to directly control
network hardware is still not sufficiently mature. Although it
could be implemented on InfiniBand hardware using Direct
Verbs and DevX, there is not high-level support for MPI as there
is with CPU initiated communication with libraries such as OFI
and UCX. This is something that needs to be addressed with
the multiple network and GPU vendors.

D. GPU-Initiated MPI

Bridges et al. [18] provide an in-depth summary of past and
present proposals for better GPU support for MPI. Venkatesh et
al. [45], extended the MPI_Send/Recv interface to include a
stream parameter where a CUDA stream could be placed. Zhou et
al. [46] propose similar MPI extensions for making calls stream-
aware. In addition to previously MPI_Send/Recv calls work-
ing on their streams, they propose adding an MPIX_Stream
object so that this interface can be accelerator agnostic. They
also propose MPI_Wait calls that wait for on those streams to
synchronize. Alongside those proposals, they also suggest having
a stream communicator so that streams can be addressed between
different processes. HPE Cassini NICs have the capability to
store communication operations in hardware that can then be
triggered at a later time. Namashivayam et al. [47], [48] leverage
these capabilities to allow GPU streams to trigger MPI Send
or MPI Put operations. Our work differs from the other MPI
Proposals as we are focused on MPI Partitioned.

VIII. CONCLUSIONS

As the prevalence of GPU systems grows in the TOP500,
efficient GPU support for MPI becomes critical to maintain
performance for HPC and AI applications. Device bindings
for MPI Partitioned potentially allow MPI to keep up with
specialized libraries such as RCCL or NCCL.

In this paper, we presented the first detailed work on GPU-
Initiated MPI Point-to-Point Partitioned Communication. We
used UCX to provide GPU-to-GPU intra-node Kernel Copy
communication without host control and compare its performance
to issuing copies using the MPI Progression Engine. Aggregation
of user partitions are explored using counters. We extend our
Point-to-Point library implementation to present the first results
on GPU Partitioned Collectives. Our Partitioned Collective
uses a generic scheduling algorithm designed to be algorithm-
independent. The designs are evaluated using micro-benchmarks
for Point-to-Point and collective, then finally for a Jacobi solver
and a Data Parallel Deep Learning Proxy application. Our design
is compared against the state-of-the-art NCCL communication
library and brings MPI performance much closer to the load-store
vendor communication solutions in terms of performance.
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