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Abstract—The concept of GPU-aware multi-path communica-
tion and heterogeneous computing is pivotal in enhancing HPC
cluster performance. Heterogeneous computing utilizes various
computing units to boost distributed applications, while multi-
path communication frameworks optimize data transfer and
reduce latency. This study proposes a collaborative Allreduce
collective communication framework that utilizes heterogeneous
computing and multi-path communication for multi-GPU sys-
tems. Leveraging GPU parallelism and high memory bandwidth,
our approach optimizes both data transfer and computing power
of the host system. We provide a proof-of-concept implementation
and evaluation on a single-node multi-GPU system, comparing its
performance to NCCL, UCC, and other algorithms. Our results
show that our framework can improve Allreduce performance
for large message sizes by up to 1.45x compared to NCCL. Our
approach can be extended to various topologies and systems, with
more extensive evaluations planned for the future.

Index Terms—GPU, Multi-Path Communication, Heteroge-
neous Computing, Allreduce, Collective Communication

I. INTRODUCTION

In the fast-paced world of High-Performance Computing
(HPC), achieving efficient utilization of computational and
communication resources remains a critical challenge. The
growing demand for processing vast datasets and running
complex simulations necessitates innovations that can de-
liver higher performance and scalability. The two prominent
paradigms, heterogeneous computing and multi-path commu-
nication, have emerged as key contributors to addressing these
demands [10], [18].

Heterogeneous computing enables developers to utilize a
variety of computing or communication units at the same
time. As demonstrated in previous studies, utilizing compu-
tation or communication heterogeneity, can lead to significant
performance improvements in HPC applications [2], [15],
[9]. For instance, in training LLMs, when the model size
exceeds the memory capacity of the Graphics Processing Unit
(GPU)s, model states can be spilled to the host memory in a
pipeline fashion to remedy the memory constraints [3], [8].
However, leveraging this potential requires careful analysis
of the underlying hardware architecture and the applications’
requirements. Moreover, with multi-path communication, de-
velopers optimize the data movement by utilizing available
communication paths. By balancing traffic and reducing con-
gestion, this approach can significantly enhance bandwidth uti-
lization and minimize communication latency. Previous studies

have shown that multi-path communication even for single
messages can improve the performance of HPC applications
when applied with explicit consideration of the underlying
hardware architecture [10], [11], [12].

Collective communication operations, such as Allreduce,
are fundamental building blocks in many HPC applications,
including machine learning, scientific simulations, and nu-
merical computations. These operations often dominate the
overall execution time, especially in GPU-heavy workloads
where data exchange between multiple GPUs can become a
bottleneck [1], [13]. As such, optimizing collective commu-
nication for multi-GPU systems is a critical area of research.
Exploring heterogeneity in the context of collective commu-
nication has been shown to improve the performance of these
operations [17]. However, existing state-of-the-art solutions,
such as NVIDIA Collective Communications Library (NCCL)
[5], Unified Communication Collectives (UCC) [14], and
Open MPI [6], do not exploit the potential of heterogeneous
computing and multi-path communication. These libraries are
designed to work with homogeneous systems and do not
consider the potential benefits of utilizing both CPU and GPU
resources for collective communication.

In this paper, we investigate the integration of GPU-aware
multi-path communication and heterogeneous computing to
enhance the performance of Allreduce collective operations
in multi-GPU systems. We propose a collaborative framework
that leverages the high memory bandwidth and parallelism of
GPUs alongside the computational and interconnect resources
of the host system. Our approach is designed to address the
challenges in existing state-of-the-art solutions, such as NCCL,
UCC, and Message Passing Interface (MPI) with Unified
Communication X (UCX). We introduce a proof-of-concept
design and implementation of a novel Allreduce framework
on a multi-GPU node and evaluate its performance against
state-of-the-art libraries and several algorithms. Our results
demonstrate that our proposed framework can achieve up to
1.45x speedup in Allreduce compared to NCCL for very large
messages, highlighting its potential for further optimizations
and extensions.

The remainder of this paper is organized as follows. Section
IT describes the design, implementation, and optimizations of
our heterogeneous multi-path collective framework. Section
IIT presents the experimental setup, performance evaluation,



——PCle 3.0,4.0
16, 32 GB/s Unidirectional

== NVLinks

1 to 4 pairs, Each 25 GB/s
Unidirectional

Fig. 1: Target topologies for multi-path Allreduce framework
that utilizes NVLink (any number of pairs) and PCle paths
between two GPUs of the system.

and analysis of the results. Finally, Section IV concludes the
paper, summarizing the contributions and discussing future
directions.

II. DESIGN AND IMPLEMENTATION

Figure 1 illustrates the target topology for our multi-path
Allreduce framework. In this topology two GPUs are directly
connected by NVLink as well as Peripheral Component Inter-
connect Express (PCle) interconnect to the system. In such
topologies, and depending on the applications, CPU cores
are usually used for data staging and control operations,
while the GPUs are used for the actual computation. As
the application data resides on the GPUs, and the GPUs are
directly connected, employing the CPUs to participate in the
Allreduce might seem counter-intuitive. However, when CPU
cores are idle during a GPU collective operation, they could
be utilized to accelerate the reduction process, when the data
is large enough to saturate the NVLink.

To design and implement our proof-of-concept multi-path
heterogeneous Allreduce framework, we have considered the
following key design goals:

o Multi-path Communication: Utilizing all available band-
width to decrease data transfer overhead between the GPUs.

o Leveraging Idle CPUs in the Data Path: Concurrently
utilizing the computational capabilities of both CPUs and
GPUs to enhance collective communication.

o Low Overhead: Implementing a low-overhead pipelined
communication scheme to overlap computation and com-
munication tasks along both NVLink and PCle paths.

o Data Integrity: Ensuring data integrity and consistency
during data transfers and computations.

o Reducing CPU Involvement in the Control Path: Uti-
lizing asynchronous communication primitives to offload
communication and computation tasks from the CPUs to
the GPUs asynchronously.

A. Framework Architecture

We use Pairwise Exchange as the base algorithm for our
Allreduce design, due to its efficiency for small number of
GPUs, and its extensibility to seamlessly support multi-path
communication. Moreover, as will be further discussed in
Section III, we have not observed significant performance
differences between Pairwise Exchange and other algorithms
for two GPUs. However, for larger number of GPUs, other al-
gorithms such as Segmented Ring or Reduce-Scatter Allgather
(RSA) might be more bandwidth-efficient.
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Fig. 2: Multi-path Heterogeneous Pairwise Exchange Allre-
duce on two GPUs using NVLink and PCle.

Fig. 2 provides a simplified overview of our approach, illus-
trating how the multi-path heterogeneous Pairwise Exchange
Allreduce works on two GPUs. The steps on each side of the
figure, device (left) and host (right), represent the algorithm
tasks that should occur with the specified order and may be
concurrent to those of the other side. Our main goal is to
maximize concurrency and overlap between the two sides to
minimize latency. Therefore, data should be carefully divided
into two parts at a certain threshold to be handled by each
side. This threshold is determined based on the data size, the
available bandwidth of the NVLink and PCle paths, and the
computational power of the GPUs and the host system. For
brevity in this work, we have statically tuned this threshold for
various message sizes and different systems, and we report the
best results.

Additionally, we have implemented our proposed algorithm
outside the runtime library using CUDA Driver Application
Programming Interface (API), controlling the GPUs via the
CUDA contexts. We have also utilized CUDA streams and
CUDA events to achieve the desired concurrency and overlap
between several simultaneous series of tasks on both sides.

B. Multi-path Heterogeneous Allreduce

On the devices side (left), in Step 1, each GPU context
initiates a series of Peer-to-Peer transfers to retrieve the peer
data, chunk by chunk, and on a specific stream. In Step 2, to
apply computation on the received chunk with the local data, a
computation kernel is enqueued on the corresponding stream.
Finally, in Step 3, the reduced data is stored in the output
buffer. For further improvement, this step is packed into the
computation kernel to store the results directly into the output
buffer from the temporary chunk.
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Fig. 3: A summarized NVIDIA Nsight Systems timeline profile of the multi-path heterogeneous Allreduce (128 MB) on one
of the GPUs on Daisy cluster. Grey and blue boxes are reduction operations on the host and the device, respectively.

The algorithm on the host side (right) performs differently.
Instead of the get operations, a series of Device-to-Host (D2H)
put operations are initiated in Step I from each CUDA context
to store their input data to a pre-allocated pinned memory
location, chunk by chunk. Then, one of the GPU contexts (e.g.,
GPU 0) synchronizes its specific streams with the completion
of the D2H put operations from both contexts through CUDA
events. After that, for each pair of received chunks from both
sides, a callback is enqueued into the corresponding streams
with the cudaHostFunction type. When the data becomes
ready, in Step II, the host function is called to reduce the data
and store the results in the output buffer. For this step, we
have utilized OpenMP threads to perform the reduction on the
host side. Finally, in Step III, the reduced data is sent back
to the devices through a series of Host-to-Device (H2D) get
operations by each CUDA context.

Figure 3 presents a summarized profile of our multi-path
heterogeneous Allreduce on one of the GPUs (the other GPU
profile is very similar, therefore omitted due to space con-
straints). The profile clearly illustrates how all interconnects
are utilized, and how both CPU and GPU compute resources
are leveraged for reduction.

Note that all these operations are initiated by a CPU core in
an asynchronous manner, and the GPU contexts are synchro-
nized with the completion of data transfers and computations
using CUDA events. Additionally, special cases such as the
last chunk of data or data sizes that are not multiples of the
chunk size are carefully handled to ensure data integrity.

III. EVALUATION

To evaluate the performance of our framework, we com-
pared it against NCCL (v2.24.3-1), MPI (v5.0.2) configured
with UCC (v1.3), UCX (v1.17), and CUDA (v12.6), as well as
two commonly used Allreduce algorithms: Pairwise Exchange
and Segmented Ring, both implemented outside the runtime
libraries, including their pipelined and kernel-only versions. In
the pipelined versions of these algorithms, the data is split into
multiple chunks to overlap the algorithm steps, while in the
kernel-only versions, both computation and communication
tasks are packed into a single kernel, similar to how NCCL
performs. These implementations utilize neither multi-path nor
heterogeneous techniques, thereby ensuring a fair compari-
son between our framework and NCCL, by highlighting the
sources of performance improvements.

A. Experimental Setup

We conducted a series of experiments on three different
GPU configurations from these clusters:

« Daisy: A two-socket local node equipped with two NVIDIA
A30s on each socket. Each GPU pair is connected by four
pairs of NVLink, and each socket has an Intel Xeon Gold
6338, with 32 cores and two threads per core. The two di-
rectly connected GPUs and one of the CPUs are configured
as a single Non-Uniform Memory Access (NUMA) node.
Mist: Similar to Daisy, but equipped with NVIDIA V100
GPUs, with three pairs of NVLink in-between. The CPUs
are Power9 8335-GTH with 16 cores and four HW threads.
o Narval: An eight-NUMA node equipped with four NVIDIA
A100 GPUs, with a full mesh topology and four pairs of
NVLink between any two GPUs. The CPUs are two AMD
EPYC 7413 with total of 24 cores with hyper-threading
disabled. On this system, each GPU is connected to a single
NUMA node, which consists a single memory channel and
only 6 cores of one of the CPUs, making it an example
that is not ideal for our framework due to the NUMA
configuration and the low number of cores available for
computation per each NUMA.

We assessed the performance of our framework using two
GPUs in each node in these clusters, resembling a two-GPU
topology.

B. Performance Analysis

Figure 4 illustrates the speedup of our proposed methodol-
ogy, (I) multi-path heterogeneous Pairwise Exchange, as well
as MPI and UCC, against NCCL on Daisy, Narval, and Mist
nodes, for message sizes ranging from 32 MB to 512 MB.
Evaluating the performance of various algorithms/solutions,
we can observe that our proposed approach outperforms
NCCL by up to 1.45x for very large messages on Daisy. Other
observations include:

o Observation 1: By implementing and comparing similar
Allreduce algorithms to NCCL and UCC (pipelined and
kernel-based Segmented Ring and Pairwise Exchange), we
can observe that the runtime libraries (NCCL and MPI)
have a small but noticeable overhead compared to their
standalone versions.

¢ Observation 2: Our proposed method outperforms all the
other implemented algorithms, confirming that utilizing
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Fig. 4: Speedup of various Allreduce algorithms (including MPI_UCC_UCP, MPI_UCC_NCCL) against standalone NCCL on

Daisy, Narval, and Mist nodes, using two GPUs.

multiple paths as well as CPUs and GPUs for computation
improves the performance of Allreduce for large messages,
independent of the communication libraries overhead.

o Observation 3: Comparing the improvements from dif-
ferent nodes, we can observe that the performance gain
is less significant on Narval. This is due to the NUMA
configuration of this system, the low number of CPU cores
per NUMA for computation, and the greater performance
difference between the NVLink and PCle.

o Observation 4: Pipelined-based collectives outperform the
kernel versions due to utilizing copy engines. Although
not shown in the figure, this trend starts around message
sizes larger than 16 MB. However, for smaller messages,
the kernel versions are increasingly more efficient. This
observation is consistent with previous studies [16].

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel multi-path heterogeneous
Allreduce framework for multi-GPU systems. By leveraging
both GPU and CPU resources and interconnects, our ap-
proach effectively utilizes available bandwidth and computa-
tional power to enhance performance. Our experimental results
demonstrate that our framework can achieve up to 1.45x
speedup over NCCL. The integration of multi-path commu-
nication and heterogeneous computing demonstrates to be a

promising direction for improving the efficiency of Allreduce
operations commonly used in HPC and Deep Learning.

In future work, we will focus on extending our framework
to support a larger number of GPUs and more complex topolo-
gies. This way, we can observe the applicability, scalability,
and performance of our approach in multi-node systems where
multiple data transfers compete for PCle bandwidth. Addi-
tionally, we plan to explore dynamic adaptation techniques
to optimize communication patterns based on applications
requirements and hardware configurations. Utilizing analytical
performance modeling, we aim to predict the optimal config-
uration for different systems and workloads. We also aim to
investigate the integration of our framework within runtime
libraries such as MPI and UCC. Moreover, the discussed
techniques and approaches are adaptable to other collective
communication operations, and lastly we will explore the
applicability of our collective design in different domains such
as machine learning and scientific simulations.
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